Neuronal nicotinic acetylcholine receptors: not just in brain

Eliot R. Spindel
Division of Neuroscience, Oregon National Primate Research Center,
Oregon Health and Science University, Beaverton, Oregon 97006

THE REPORT from Fu et al., one of the current articles in focus (Ref 7, see page L1203 in this issue), shows the presence and functional activity of nicotinic acetylcholine receptors (nAChR) in neuroepithelial bodies (NEB) in neonatal hamster lung. NEB are small groups of pulmonary neuroendocrine cells (PNEC) located in airway epithelium typically at bifurcations of small airways. NEB appear to be chemo- and mechanoreceptors, and their numbers increase during midgestational lung development (5, 23). NEB synthesize a large variety of neuropeptides, growth factors, and vasoactive substances, including serotonin, and are thought to play a trophic role during lung development (23). The identification of active nAChR by Fu et al. (7) in NEB suggests mechanisms by which smoking during pregnancy impairs normal lung development, begins to help explain the link between smoking during pregnancy and sudden infant death syndrome (SIDS), and even has suggestions for the link between smoking and lung cancer.

Infants whose mothers smoke during pregnancy show diminished lung function, increased respiratory illness, increased asthma, and an increased chance of dying from SIDS (11, 24, 28). Indeed, smoking during pregnancy is now the most significant preventable cause of SIDS. In pregnant smokers, nicotine levels in amniotic fluid range from 5 to 200 nM, similar to, or slightly higher than, average plasma nicotine levels (1, 15). Given this, the expression of nAChR in lung during development provides a receptor-mediated mechanism to understand at the molecular level how smoking affects lung development. nAChR have previously been reported in airway epithelium (17, 20), fibroblasts (20), and type II cells (20). In airway epithelium, α7, α4β2, and other heteromeric nAChR forms have been reported (17, 20), and α7 nAChR have been reported in lung fibroblasts.

In Fu et al. (7), the authors have shown the presence of nAChR α3β2, α4β2, and β2-subunits in NEB. These subunits form active nAChR with both fast-desensitizing currents, consistent with α7 homomeric nAChR, and slow-desensitizing currents, consistent with α4β2 or α3β2 heteromeric nAChR. These receptor subtypes all respond to nicotine at the concentrations present in amniotic fluid, and, therefore, the ability of nicotine transferred across the placenta to modulate nAChR activity in the developing lung is clear. Nicotine has also been shown to induce secretion from PNEC. Thus nicotine can directly affect lung development by interacting with nAChR on airway epithelium and fibroblasts and indirectly by stimulating release of trophic factors from NEB. This provides a mechanism by which smoking during pregnancy affects lung development and leads to the well-documented diminished pulmonary function in exposed infants at birth. Consistent with this, prenatal nicotine exposure alters lung structure in animal models (16, 20) in ways similar to changes seen in lungs of infants whose mothers smoked during pregnancy (6). It has also been suggested that nicotine-induced secretion of bioactive compounds from NEB may play a role in the increase of childhood asthma associated with maternal smoking (14).

Harder to understand has been the link between smoking and SIDS. SIDS likely results from a number of different disorders, ranging from cardiac defects to defects in respiratory patterns and regulation to impaired neonatal arousal responses (12, 26). The altered respiratory patterns or arousal responses could reflect effects in chemosensory signaling. Work from Youngson et al. (29) and others have clearly established that NEB are oxygen sensors and respond to hypoxia by changes in electrical activity and by increased release of serotonin and other factors (8). NEB are complexly innervated with vagal afferents (2), and alterations in NEB signaling will thus lead to altered signaling in the brain stem. The demonstration in the present paper by Fu et al. (7) of active nAChR in NEB now provides a clear mechanism by which nicotine can affect both local NEB secretory function and NEB signaling pathways. Consistent with this, Hafstrom et al. (9, 10) have shown that prenatal nicotine exposure alters breathing patterns and decreases response to hypoxia in newborn lambs, and Slotkin et al. (21) have showed altered responses to hypoxia in rats exposed to nicotine in utero. This is also consistent with the alterations in responses to hypoxia observed in β2 nAChR knockout mice (4). Particularly intriguing, given the release of serotonin by NEB in response to hypoxia, is the recent report of the increased risk of SIDS associated with polymorphisms of the serotonin transporter gene (27) that would be expected to increase serotonin reuptake.

However, although the expression of nAChR in NEB is highly intriguing, there is still little known about how nicotine actually links to SIDS. Is the site of action at the NEB, at other chemoreceptors, or in the brain...
stem, or are the effects additive? Are the effects neu-
urally mediated or caused by humoral factors secreted
from NEB? Even more basic is the question as to
whether chronic nicotine leads to receptor activation or
desensitization. Surprisingly, such a basic question is
still highly controversial. In some systems, nicotine
clearly inactivates, as shown by desensitizing currents
in the present report (7) as well as in multiple other
studies (18). On the other hand, in some systems,
nicotinic receptors do not deactivate, as described by
Kawai and Berg (13) and Buisson and Bertrand (3). Of
course, it may be that the effects of prenatal nicotine
exposure are a complex mixture of receptor activation
and inactivation.

Finally, nicotine does not just affect NEB before
birth. Nicotinic receptors have been reported in small
cell lung carcinomas (SCLC), which are tumors derived
from PNEC or related precursor cells. SCLC express
both homomeric α7 nAChR and complex heteromeric
α3β2,α7, and α3-containing nAChR (22, 25), and nicotine
has been shown to stimulate SCLC cell growth (22, 25).
Thus lung cancers are also targets for nicotine. What role
nicotinic activation of nAChR on PNEC and NEB may
play in the transformation events leading to SCLC and the
interplay between nicotine and other carcinogens
remains to be determined. Intriguingly, the tobacco
smoke carcinogen NNK also activates α7 nAChR (19).

Thus between the development of respiratory con-
trol, unanswered questions on how smoking leads to
increased risk of SIDS, and the possible ties to asthma
and lung cancer, the expression of nAChR in lung is of
major importance. Clearly, many important questions
remain, but the expression of nicotinic receptors in
nonneural tissues, such as lung, provides yet more rea-
tons to stop smoking and limit nicotine consumption.

DISCLOSURES

This work supported by National Institutes of Health Grants
RR-00163 and HD/HL-37131.

REFERENCES

2. Brouns I, Van Genechten J, Hayashi H, Gajda M, Gomi T,
Burnstock G, Timmermans JP, and Adriaensen D. Dual
sensory innervation of pulmonary neuronal epithelial bodies. Am J
3. Buisson B and Bertrand D. Nicotine addiction: the possible
geux JP, and Lagerantz H. B2 Nicotinic acetylcholine recep-
tor subunit modulates protective responses to stress: a receptor
basis for sleep-disordered breathing after nicotine exposure. Proc
5. Cutz E and Jackson A. Neuroepithelial bodies as airway oxy-
smoking is associated with increased inner airway wall thick-
ness in children who die from sudden infant death syndrome.
7. Fu XW, Nurse CA, Farragher SM, and Cutz E. Expression of
functional nicotinic acetylcholine receptors in neuroepithelial
bodies of neonatal hamster lung. Am J Physiol Lung Cell Mol
8. Fu XW, Nurse CA, Wong V, and Cutz E. Hypoxia-induced
secretion of serotonin from intact pulmonary neuroepithelial
9. Hafstrom O, Milerad J, and Sundell HW. Altered breathing
pattern after prenatal nicotine exposure in the young lamb. Am J
exposure blunts the cardiorespiratory response to hypoxia in
11. Hoo AF, Henschen M, Dezauteaux C, Costeioe K, and Stocks J.
Respiratory function among preterm infants whose mothers
smoked during pregnancy. Am J Respir Crit Care Med 158: 700–705,
1998.
12. Hunt CE. Sudden infant death syndrome and other causes of
infant mortality: diagnosis, mechanisms, and risk for recurrence
13. Kawai H and Berg DK. Nicotinic acetylcholine receptors con-
taining α7 subunits on rat cortical neurons do not undergo
long-lasting inactivation even when up-regulated by chronic
14. Lodrup Carlsen KC and Carlsen KH. Effects of maternal and
early tobacco exposure on the development of asthma and airborne
15. Luscher TF, Nau H, Eberle K, and Steldinger R. Extent of
nicotine and cotinine transfer to the human fetus, placenta and
amniotic fluid of smoking mothers. Dev Pharmacol Ther 8: 384–
16. Maritz GS. Maternal nicotine exposure during gestation and
lactation of rats induce microscopic emphysema in the offspring.
17. Maus ADJ, Pereira EFR, Karachunski PI, Albuquerque EX,
Garcia FJ. Loss of neonatal hypoxia tolerance after prenatal nicotine
exposure: implications for sudden infant death syndrome. Brain
Whissett JA, Lindstrom J, and Spindel ER. Prenatal nicotine increases
pulmonary α7 nicotinic receptor expression and alters fetal lung
19. Slotkin TA, Lappi SE, McCook EC, Lorber BA, and Seidler
FJ. Loss of neonatal hypoxia tolerance after prenatal nicotine
exposure: implications for sudden infant death syndrome. BRAIN
20. Weese-Mayer DE, Berry-Kravis EM, Maher BS, Silvestri JM,
Curran ME, and Marazita ML. Sudden infant death syndrome:
association with a promoter polymorphism of the serotonin trans-