Estradiol and tamoxifen stimulate LAM-associated angiomyolipoma cell growth and activate both genomic and nongenomic signaling pathways

Yu, Jane, Aristotelis Astrinidis, Sharon Howard, and Elizabeth Petri Henske. Estradiol and tamoxifen stimulate LAM-associated angiomyolipoma cell growth and activate both genomic and nongenomic signaling pathways. Am J Physiol Lung Cell Mol Physiol 286: L694–L700, 2004. First published August 15, 2003; 10.1152/ajplung.00204.2003.—Lymphangioleiomyomatosis (LAM) is a progressive lung disease affecting almost exclusively women. The reasons for this strong gender predisposition are poorly understood. Renal angiomyolipomas occur in 50–60% of sporadic LAM patients. The smooth muscle cells of pulmonary LAM and renal angiomyolipomas are nearly indistinguishable morphologically. Here, we report the first successful cell culture of a LAM-associated renal angiomyolipoma. The cells carried inactivating mutations in both alleles of the TSC2 gene and expressed estrogen receptor α, estrogen receptor β, and androgen receptor. To elucidate the cellular pathways through which steroid hormones influence LAM pathogenesis, we treated the cells with both estradiol and tamoxifen. Cell growth was stimulated by estradiol, associated with phosphorylation of p44/42 MAPK at 5 min and an increase in c-myc expression at 4 h. Tamoxifen citrate also stimulated cell growth, associated with increased phosphorylation of p44/42 MAPK and expression of c-myc, indicating that tamoxifen has agonist effects on angiomyolipoma cells. This response to tamoxifen in human angiomyolipoma cells differs from prior studies of Eker rat leiomyoma cells, possibly reflecting cell type or species differences in cells lacking tuberin. Our data provide the first evidence that estradiol stimulates the growth of angiomyolipoma cells, that tamoxifen has agonist effects in angiomyolipoma cells, and that estradiol and tamoxifen impact both genomic and nongenomic signaling pathways in angiomyolipoma cells. The responsiveness of angiomyolipoma cells to estradiol may be related to the underlying reasons that LAM affects primarily women.

PULMONARY LYMPHANGIOLEIOMYOMATOSIS (LAM) affects almost exclusively women, with an average age at diagnosis of 33 years (28, 54). LAM is characterized pathologically by a diffuse, bilateral proliferation of abnormal smooth muscle cells, accompanied by extensive reactive epithelial hyperplasia (40) and cystic degeneration of lung parenchyma. LAM can occur as an isolated disorder, referred to as sporadic LAM, or in patients with tuberous sclerosis complex (TSC). TSC is a tumor suppressor gene syndrome characterized by seizures, mental retardation, autism, and tumors in brain, retina, kidney, heart, and skin (21). Pulmonary parenchymal changes consistent with LAM occur in 34–42% of women with TSC (13, 19, 43). Renal angiomyolipomas occur in at least 70% of TSC patients and in ~50% of sporadic LAM patients (4). Angiomyolipomas are distinctive tumors with three components: dysplastic blood vessels, smooth muscle cells, and fat. The normal smooth muscle cells of pulmonary LAM and renal angiomyolipomas are nearly identical at the histological, immunohistochemical, and ultrastructural levels (10, 11). In prior work, we found that both angiomyolipoma cells and pulmonary LAM cells from some sporadic LAM patients contain somatic mutations in the TSC2 gene (9). We and others (6, 29, 48, 59) have hypothesized that pulmonary LAM results from metastasis of angiomyolipoma cells.

The reasons that LAM occurs predominantly in women are not well understood. Estrogen receptor expression has been observed in pulmonary LAM cells (7, 33) and angiomyolipoma smooth muscle cells (39), and downregulation of the estrogen receptor has been observed after hormonal therapy for LAM (41). However, the effects of estrogen on LAM or angiomyolipoma cell growth have not, to our knowledge, been previously studied in vitro, in part because pure cultures of pulmonary LAM cells are difficult to establish. We report here the development of a primary cell culture from a LAM-associated renal angiomyolipoma. Genetic studies revealed mutations in both alleles of the TSC2 gene. The growth of these cells was stimulated by both estradiol and tamoxifen, associated with phosphorylation of p44/42 MAPK and increased c-myc expression. These data demonstrate for the first time that steroid hormones stimulate the growth of angiomyolipoma cells and activate both cytoplasmic and genomic signaling pathways.

METHODS

Establishment of the angiomyolipoma culture. This study was approved by the Institutional Review Board of Fox Chase Cancer Center. Fresh angiomyolipoma tissue was minced and treated with 0.2% collagenase (Sigma, St. Louis, MO) in serum-free Ham’s F-12 media at 37°C for 1 h. The cells were then washed and plated in 1.5 ml of IIA complete media (2) with 15% FBS for the first week and 7.5% FBS subsequently. Cells were used at passages 4–6 for all experiments.

Genetic analyses. DNA sequencing and single-strand conformation polymorphism (SSCP) analysis were performed as previously described (9).
Immunoblotting and antibodies. Cells were lysed in RIPA buffer [1× PBS, 1% Nonidet P-40, 0.5% sodium deoxycholate, 0.1% SDS, and 1 mM sodium orthovanadate supplemented with protease inhibitor cocktail I (Sigma)]. The cell lysates were resolved by SDS-PAGE and transferred onto Immobilon-P membranes (Millipore, Bedford, MA). The following antibodies were used for Western blot analysis: anti-estrogen receptor α (ERα), anti-c-Myc, and anti-tuberin C-20 (Santa Cruz Biotechnology, Santa Cruz, CA); anti-rubosomal protein S6, anti-phospho-S6, anti-p44/42 MAPK, and anti-phospho-p44/42 MAPK (Cell Signaling Technology, Beverly, MA); anti-Kip1/p27 (BD Biosciences, Palo Alto, CA); anti-cyclin D1 (Neomarker, Fremont, CA); anti-β-actin (Sigma); and anti-hamartin (46).

RT-PCR. RNA was isolated using TRizol reagent (Invitrogen, Carlsbad, CA). For the first-strand complementary DNA synthesis, 5 μg of total RNA and oligo deoxythymidine primer were used. The RT reaction was performed using the SuperScript First-Step Synthesis System (Invitrogen). ERα, estrogen receptor β (ERβ), androgen receptor (AR), and 18S ribosomal RNA were amplified using previously reported primers and conditions (5, 51). PCR products were resolved by 2% agarose gel electrophoresis and stained with ethidium bromide.

Hormonal treatments. Five hundred angiomyolipoma cells were seeded into each well of a 96-well plate. After 72 h, cells were fed with fresh media containing charcoal-stripped FBS (Atlanta Biologicals, Norcross, GA) supplemented with 0.1–100 nM 17-β-estradiol (Sigma), 0.2–20 μM tamoxifen citrate (Sigma), or 0.1% ethanol (vehicle) in triplicate wells. Cells were fed with freshly prepared medium every other day. Cell growth was measured daily using Alamar blue (BioSource International, Camarillo, CA), an indicator dye that becomes fluorescent on mitochondrial reduction (1, 60).

Statistics. Results are presented as means ± SD of experiments performed in triplicate. Statistical analysis was performed using a two-tailed paired Student’s t-test.

RESULTS

Cultured angiomyolipoma cells have mutations inactivating both alleles of TSC2, express steroid hormone receptors, and have hyperphosphorylation of rubosomal protein S6. The cultured angiomyolipoma cells grew as a monolayer, with a homogeneous spindle-shaped morphology. In early passages, cells containing fat were occasionally seen (arrow). A: photograph of the angiomyolipoma cells in culture. The majority of the cells were spindle shaped. In early passages, cells containing fat were occasionally seen (arrow). B: identification of the exon 16 mutation in the cultured angiomyolipoma cells by direct sequencing. The arrow indicates the position of the mutation (a nucleotide change G1832A) in TSC2 exon 16, which results in a G1832A missense mutation. Sequencing revealed exclusively the residue (A) at position 1832, indicating loss of heterozygosity of the TSC2 allele containing the wild-type residue (G).

Fig. 1. Cultured angiomyolipoma cells contained TSC2 gene mutations. A: photograph of the angiomyolipoma cells in culture. The majority of the cells were spindle shaped. In early passages, cells containing fat were occasionally seen (arrow). B: identification of the exon 16 mutation in the cultured angiomyolipoma cells by direct sequencing. The arrow indicates the position of the mutation (a nucleotide change G1832A) in TSC2 exon 16, which results in a G1832A missense mutation. Sequencing revealed exclusively the residue (A) at position 1832, indicating loss of heterozygosity of the TSC2 allele containing the wild-type residue (G).
growth at 6 days compared with vehicle control ($P < 0.05$). Although there appeared to be an inverse association between dose and proliferation, this was statistically significant only at the 6-day time point.

Unexpectedly, the growth of the angiomyolipoma cells was also stimulated by tamoxifen citrate (Fig. 3B). Tamoxifen citrate at 0.2 μM stimulated cultured cell growth by approximately threefold relative to the vehicle control level at 6 days ($P < 0.05$). These results indicate that tamoxifen acts as an estrogen agonist in angiomyolipoma cells, in contrast to tamoxifen’s estrogen antagonist action in Eker rat-derived ELT3 cells (25).

Estradiol and tamoxifen activate both cytoplasmic and genomic signaling pathways. To determine whether estradiol activates nongenomic (cytoplasmic) signaling pathways, we analyzed cell lysates within 60 min after 1 nM estradiol treatment. Estradiol increased p44/42 MAPK phosphorylation at 5- and 60-min time points in the angiomyolipoma cells (Fig. 4A), linking estradiol to rapid, cytoplasmic signaling pathways in angiomyolipoma cells. Insufficient cells were available to test additional time points. MCF-7 cells treated with 1 nM estradiol also showed rapid activation of p44/42 MAPK (Fig. 4A). Tamoxifen citrate also increased p44/42 MAPK phosphorylation at 15-, 30-, 45-, and 60-min time points (Fig. 4B), suggesting that tamoxifen and estradiol are signaling through common cellular pathways. This is consistent with the hypothesis that tamoxifen acts as an estrogen agonist in angiomyolipoma cells.

To determine whether estradiol treatment of the angiomyolipoma cells was associated with transcriptional effects of the estrogen receptor, we studied cell extracts prepared after 4 and 8 h of estradiol treatment. Increased expression of c-myc, which is an estrogen-responsive gene (16), was observed at 4 h in the angiomyolipoma cells as well as in MCF-7 breast cancer cells treated with estrogen (Fig. 5A). Decreased p27 expression was seen in both angiomyolipoma cells and MCF-7 cells after estradiol treatment. Cyclin D1 expression was not changed.
After tamoxifen citrate treatment, increased expression of c-myc was seen at 8 h in the angiomyolipoma cells, again without a change in cyclin D1 (Fig. 5B).

DISCUSSION

LAM occurs almost exclusively in women, and LAM and angiomyolipoma cells are known to express ERα. Our data suggest that angiomyolipoma cells also express ERβ, although this will require confirmation in additional specimens. In vivo (56) and in vitro data from the Eker rat model of TSC2 indicate that tumorigenesis in TSC is hormonally driven, and the COOH terminus of tuberin has been shown to interact in vitro with steroid hormone receptors as a transcriptional coactivator (23). Despite these compelling indications that steroid hormones contribute to angiomyolipoma pathogenesis, the impact of estrogen on angiomyolipoma cell growth and signaling has not been previously studied.

We report here that cells derived from a sporadic LAM-associated angiomyolipoma grew in response to both estradiol and tamoxifen citrate. This growth was associated with phosphorylation of p44/42 MAPK and increased expression of c-myc. An important feature of our work is that the angiomyolipoma had somatic TSC2 gene mutations, allowing us to prove that the cultured cells were angiomyolipoma derived. To our knowledge, this is the first time that cells from an angiomyolipoma with TSC2 gene mutations have been successfully cultured. Our data indicate that estradiol and tamoxifen citrate stimulate both genomic, transcriptional responses (increased expression of c-myc) and nongenomic, cytoplasmic responses (rapid activation of p44/42 MAPK) in cultured angiomyolipoma cells.

The cellular pathways through which tuberin could influence steroid hormone signaling are not clear. Hamartin and tuberin function in multiple cellular pathways in mammalian cells, including vesicular trafficking (57), regulation of the G1 phase of the cell cycle (27, 42, 47, 50, 52), steroid hormone regulation (23), and Rho activation (3, 35). Tuberin has a highly conserved domain with homology to rap1 GTPase activating protein (GAP), and tuberin has been shown to possess GAP activity for rap1A (55) and rab5 (57). Recently, hyperphosphorylation of p70S6 kinase (p70S6K) and/or its substrate ribosomal protein S6 was observed in cells lacking hamartin from a murine model of TSC1 (34), in cells lacking tuberin from the Eker rat model of TSC2 (22, 31) and in tumor cells containing TSC2 mutations (30), demonstrating that the hamartin-tuberin complex negatively regulates p70S6K. Tuberin is also a substrate of the p38 and MK2 kinase cascade (37), mediating its interaction with 14-3-3 (38, 44, 49). Whether and how these pathways involving hamartin and tuberin intersect with steroid hormone signaling will require additional studies.

Our data using a primary angiomyolipoma-derived culture provide a foundation for elucidating the role of steroid hor-
otions are clear: that the dif
approach has inherent strengths and limitations. The limita-
mones in angiomyolipomas and LAM. The primary culture
problems in obtaining fresh tissue for
cultures of an angiomyolipoma has been reported (2).
In that case, the cells did not contain mutations in
TSC2, and immortalization required the introduction of both
simian virus 40 large T antigen and telomerase.
Angiomyolipoma cultures derived from LAM patients could
be an important additional model for LAM. Primary cultures of
LAM cells have been established (22), but the close proximity of
LAM cells to reactive cells is problematic and may result in
mixing of cell types. ELT3 cells are a second cell culture
model for LAM (24). ELT3 cells are derived from an Eker rat
uterine leiomyoma, lack functional tuberin, and express estrogen receptor. Estrogen treatment activates the phosphorylation of
p44/42 MAPK in ELT3 cells (17), similar to our findings in
angiomyolipoma cells. However, tamoxifen inhibits the
growth of ELT3 cells (25), whereas tamoxifen stimulated the
growth of angiomylipoma cells, suggesting that there are
species and/or cell type differences in the interactions between
tuberin and steroid-hormone signaling that affect selective
estrogen receptor modulators such as tamoxifen.
Our results in cultured cells could have clinical implications.
First, the medical literature contains at least 30 reports of rapid
growth and/or spontaneous hemorrhage of angiomyolipomas
during pregnancy (8, 18, 20, 32, 36, 53, 58), which could be
related to the increase in angiomyolipoma cell growth we
observed in response to estradiol in vitro. The levels of uncon-
jugated estradiol rise markedly during pregnancy (15), from a
mean of 0.5 ng/ml (1.8 nM) at week 6 to 17.3 ng/ml (63.5 nM)
at week 40. Second, because the abnormal smooth muscle cells
of pulmonary LAM and renal angiomyolipomas are nearly
identical, studies of angiomylipoma cells may contribute to
the development of targeted therapies for pulmonary LAM and
provide insight into the mechanisms underlying the predomi-
nance of LAM in women. Studies of cultured human angio-
myolipoma cells could lead to the rational selection of hor-
monal therapies for patients with symptomatic or enlarging
angiomyolipomas. Finally, there are also several reports of
women with pulmonary LAM who died of progressive pulmo-
nary disease within months after initiating tamoxifen therapy
(12). Whether there is a link between the in vitro stimulation of
angiomylipoma cell growth by tamoxifen and these clinical
outcomes is unknown. Tamoxifen had estrogen agonist effects
in our angiomylipoma cells but acted as an antagonist in Eker
rat-derived ELT3 cells (25), suggesting species and/or cell type
differences. The possibility that tamoxifen or other selective
estrogen receptor modifiers have harmful agonist effects in
LAM and TSC patients, therefore, needs to be further studied
in human cells as well as in animal models.
In summary, we report here, for the first time, that the
growth of cultured cells from a LAM-associated angiomylip-
poma was stimulated by both estradiol and tamoxifen citrate.
Estradiol or tamoxifen treatment was associated with phos-
phorylation of p44/42 MAPK and increased expression of
c-myc, indicating that steroid hormone signaling in angiomyl-
ipoma cells involves both cytoplasmic and genomic effects.
LAM cells and angiomylipoma cells are virtually indistin-
guishable, and it has been hypothesized that pulmonary LAM
results from the metastatic spread of angiomylipoma cells.
Angiomylipoma cell cultures, therefore, may be critical to the
elucidation of LAM pathogenesis.

ACKNOWLEDGMENTS

We are grateful to Drs. Rebecca Rafiogianis and Antonio DiCristofano for
critical review of the manuscript and to the Fox Chase Cancer Center Cell

Fig. 5. Estradiol and tamoxifen citrate increase the expression of c-myc in
AML and MCF-7 cells. A: AML cells were treated with 0.1 nM E2, and MCF-7
cells were treated with 1 nM E2, in 10% charcoal-stripped serum. Increased
c-myc expression and decreased p27 expression were seen by immunoblot in
both the AML and MCF-7 cells. There was no change in the expression of
cyclin D1. β-actin was used as a loading control. Bar graph indicates the fold
change in c-myc, cyclin D1, and p27, as determined by densitometry. Similar
results were seen in 2 independent experiments. B: AML cells were treated
with 2 μM TC in 10% charcoal-stripped serum. Increased expression of c-myc
was seen at 8 h. There was no change in the expression of cyclin D1.

Table: Comparison of Estradiol (E2) Effects on c-myc, Cyclin D1, and p27 Expression

<table>
<thead>
<tr>
<th></th>
<th>AML</th>
<th>MCF-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (hr)</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>c-myc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclin D1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p27</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table: Comparison of Tamoxifen Citrate (TC) Effects on c-myc, Cyclin D1, and p27 Expression

<table>
<thead>
<tr>
<th></th>
<th>AML</th>
<th>MCF-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (hr)</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>c-myc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclin D1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p27</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Culture Facility for assistance with establishing the conditions for angiomylipoma cell culture.

GRANTS

This work was supported by a grant from the LAM Foundation (Cincinnati, OH), National Institutes of Health Grants DK-51052 and HL-60746, and The Rotherberg Institute for Childhood Diseases (Guilford, CT).

REFERENCES

