Surfactant dysfunction and lung injury due to the *E. coli* virulence factor hemolysin in a rat pneumonia model

Thomas A. Russo, Zhengdong Wang, Bruce A. Davidson, Stacy A. Genagon, Janet M. Beanan, Ruth Olson, Bruce A. Holm, Paul R. Knight 3rd, Patricia R. Chess, and Robert H. Notter

Departments of 1Medicine and 2Microbiology, 3The Witebsky Center for Microbial Pathogenesis; 4Veterans Administration Western New York Healthcare System; Departments of 5Anesthesiology, 6Pathology, and 7Pediatrics, 8Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo; and Departments of 9Pediatrics, 10Environmental Medicine, and 11Biomedical Engineering, University of Rochester, Rochester, New York

Submitted 24 August 2006; accepted in final form 27 October 2006

PNEUMONIA IS THE SECOND MOST frequent hospital-acquired infection, with ~300,000 cases occurring per year in the United States (8, 17, 32, 33, 55). More than 60% of nosocomial pneumonias are caused by gram-negative enteric bacilli, with *Escherichia coli*, *Pseudomonas aeruginosa*, *Klebsiella pneumoniae*, *Enterobacter sp.*, *Acinetobacter*, and *Stenotrophomonas* being most commonly isolated (8–10, 32). Gram-negative bacteria can induce severe lung disease and respiratory failure, leading to associated crude mortalities ranging from 24–76% and estimated attributable mortalities ranging from 20–50% (2, 8, 32, 55). These mortality figures translate into ~36,000–80,000 deaths annually in the United States (2, 8, 32, 55), with relatively little improvement in mortality reported over the last 10–15 years. The estimated cost of nosocomial pneumonias caused by gram-negative bacilli in this country is greater than 1 billion dollars per year (43, 55, 57).

Although the goal of host defense is to eradicate invading pathogens, an overexuberant or prolonged proinflammatory phase may result in host-mediated lung injury (16, 34, 51, 60). Therefore, the ideal host response is to maximize bacterial clearance and minimize host-mediated collateral damage to host tissue. Gram-negative bacilli commonly contain virulence factors that resist bacterial clearance and also can contribute to pulmonary damage (6, 15, 48, 58). Hemolysin (Hly) is the most common toxin present in strains of *E. coli* associated with extraintestinal infection (25). Hly is a pore-forming extracellular toxin from the RTX (repeats-in-toxin) family that has been shown to mediate death via apoptosis or necrosis depending on concentration in a wide range of cell types including macrophages, epithelial cells, and neutrophils (6, 56). Hly is present in a number of pathogens responsible for gram-negative pneumonia, including *E. coli*, *Proteus sp.*, *Klebsiella sp.*, *Serratia marcescens*, and *P. aeruginosa* (6). Animal models have investigated the role of Hly in the pathogenesis of urinary tract infection (35, 39), but the mechanisms by which this bacterial factor contributes to the pathogenesis of pneumonia at the cellular level in vivo are unclear. This paper examines the importance of Hly in increasing the severity of surfactant dysfunction and lung injury in a rat model of gram-negative pneumonia.

The role of Hly in acute pulmonary injury and surfactant dysfunction is studied using the live *E. coli* strain CP9, a Hly-positive wild-type extraintestinal pathogenic *E. coli* (ExPEC), and two isogenic derivatives either deficient in Hly (CP9ΔhlyA) or overexpressing Hly (CP9/pEK50). The primary hypothesis tested is that the presence of Hly in ExPEC increases the severity of surfactant dysfunction and lung injury following intratracheal inoculation of rats with these microorganisms. Our prior work has shown that Hly contributes to lung injury in rats given ExPEC and induces neutrophil necrosis/lysis both in vitro and in vivo (47). The present paper

The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
extends this work to focus on effects of Hly on surfactant dysfunction involving large aggregate content and surface activity in rats with *E. coli* pneumonia. Lung surfactant is known to be abnormal in activity or composition in several types of acute pulmonary injury (see Refs. 37 and 54 for review), but little information is available on the specific influence of Hly on surfactant aggregate content and activity as studied here. Additional complementary in vitro experiments address whether Hly directly damages the integrity of cultured H441 cells or indirectly injures these cells via Hly-mediated neutrophil lysis. These latter studies are included as a first step in assessing whether lung epithelial cell damage resulting directly or indirectly from Hly could be one potential contributor to aggregate-related surfactant dysfunction in *E. coli* pneumonia in vivo.

MATERIALS AND METHODS

Bacterial strains and media. The model pathogen CP9 is an *E. coli* blood isolate cultured from a patient with sepsis and has been described in detail previously (24, 42). CP9 possesses many of the characteristics of typical ExPEC strains (44) and has been shown to be highly virulent in a urinary tract infection model (41), an intraperitoneal infection model (45), and a pneumonia model (40, 46). CP9 is a *aTn* derivative of CP9 in which the structural gene for hemolysin (*hlyA*) is disrupted. CP9 has previously been confirmed to be non-hemolytic after growth on blood agar plates and in normal saline to a total weight of 10 g (assumed to equate to 10 ml), and homogenized on ice (3 bursts of 3-s duration each) using a Polytron PT-2000 homogenizer (Brinkman Instruments, Westbury, NY). Serial 10-fold dilutions of BAL and post-BAL lung homogenate were performed in PBS and cultured to assess bacterial cfu in duplicate on LB plates at 37°C. Titers of *E. coli* (cfu/ml) were determined in tissue and BAL, multiplied by the appropriate volume (10 ml for the lung homogenate or the recovered volume of BAL), and summed to yield the total lung titer in cfu/lung.

Rat model of pulmonary infection. All protocols involving animals were reviewed and approved by the Institutional Animal Care Committee at the University at Buffalo and the Veterans Administration. The rat model of *E. coli* pneumonia used has been described in detail in previous reports (40, 46, 47). In brief, Long-Evans rats (250–300 g) were anesthetized with 1.5% halothane during instillation of bacteria, in previous reports (40, 46, 47). In brief, Long-Evans rats (250–300 g) were reviewed and approved by the Institutional Animal Care Committee at the University at Buffalo and the Veterans Administration.

Bacterial strain assessment. *E. coli* titer measurements. Total lung titers of *E. coli* at 2 and 6 h were determined by enumerating the bacteria in both BAL and post-BAL lung tissue. Lungs were excised intact, weighed, suspended in normal saline to a total weight of 10 g (assumed to equate to 10 ml), and homogenized on ice (3 bursts of 3-s duration each) using a Polytron PT-2000 homogenizer (Brinkman Instruments, Westbury, NY). Serial 10-fold dilutions of BAL and post-BAL lung homogenate were performed in PBS and cultured to assess bacterial cfu in duplicate on LB plates at 37°C. Titers of *E. coli* (cfu/ml) were determined in tissue and BAL, multiplied by the appropriate volume (10 ml for the lung homogenate or the recovered volume of BAL), and summed to yield the total lung titer in cfu/lung.

Histological evaluations of lung injury. Histological evaluations of lung injury severity were performed on lung tissue obtained from subgroups of rats not subjected to BAL. Lungs were removed en bloc following tracheal cannulation and flushing of the vasculature with 20 ml of HBSS injected into the right ventricle. The lungs were fixed with 10% neutral buffered formalin at an inflation pressure of 20 cm H₂O for 24 h, and gross sections (3 from the left lung and 1 from each of the right lung lobes) were paraffin-embedded. Thin sections (4 μm) were prepared and stained with hematoxylin and eosin using standard methods (26). Slides were evaluated for the severity of lung tissue injury by an experienced pathologist (Dr. James Woytash, Dept. of Pathology, SUNY at Buffalo) who was blinded to animal group assignments.

Total protein and phospholipid content, albumin concentration, and surfactant aggregate content of cell-free BAL. Total phospholipid in cell-free BAL was measured by the phosphorus assay of Ames (1), and total protein was determined by the method of Lowry et al. (29) modified by the addition of 15% SDS to allow accurate quantitation in the presence of lipid. Albumin concentrations in cell-free BAL were measured by ELISA using a polyclonal rabbit anti-mouse albumin antibody (a gift from Dr. Daniel Remick, Univ. of Michigan, Ann Arbor, MI) and horseradish peroxidase-labeled goat anti-rabbit immunoglobulin (Pharmingen, San Diego, CA) (11). Rat albumin (Sigma, St. Louis, MO) was used as a standard. Additional studies examined the content and activity of large surfactant aggregates isolated from cell-free BAL by centrifugation at 12,500 g for 30 min. The content of large aggregates as a percentage of total BAL phospholipid was determined by phosphate assay (1).

Pulsating bubble measurements of surfactant activity. The surface activity of large surfactant aggregates was assessed during cycling at a physiological rate of 20 cycles/min at 37 ± 0.5°C on a pulsating bubble surfactometer (General Transco, Largo, FL; formerly Electro-netics, Buffalo, NY) (14). A small air bubble, communicating with ambient air, was formed in a 40-μl aliquot of surfactant in a plastic sample chamber mounted on the pulsator unit of the surfactometer. The bubble was oscillated between maximum and minimum radii of 0.55 and 0.4 mm while the pressure drop across the air-water interface...
Hly mediates a significant increase in lung injury at 6 h in rats. To determine the effects of Hly on lung injury in vivo, rats initially underwent challenge with CP9 (wild-type, Hly-positive), its isogenic derivative CP9hlyA (Hly-minus), or normal saline. A fourth group of rats received purified LPS for the purposes of comparison since this bacterial component has been used as a surrogate for bacteria in previously described studies on gram-negative pneumonia (3, 4, 36). Rats instilled intratracheally with CP9, CP9hlyA, or LPS had differing degrees of lung injury at 6 h postinoculation. Arterial oxygenation (PaO₂/FIO₂ ratio) was reduced to the greatest extent at 6 h in rats that received CP9 (67 ± 9 mmHg) compared with CP9hlyA (243 ± 54 mmHg) or LPS (237 ± 70 mmHg) (P < 0.05, Fig. 1). PaO₂/FIO₂ ratios in rats given CP9hlyA or LPS were, however, lower than those found for control rats instilled with normal saline (411 ± 41 mmHg) (P < 0.05, Fig. 1).

Arterial oxygenation in rats given CP9 met the criteria for clinical acute respiratory distress syndrome (ARDS) at 6 h, whereas rats given CP9hlyA or LPS had PaO₂/FIO₂ ratios consistent with clinical acute lung injury (ALI) based on the definitions of the American-European Consensus Committee (5).

Rats receiving CP9 also had more severe lung injury based on increased leakage of albumin into the alveolar spaces compared with rats given CP9hlyA or LPS (Fig. 2A). Albumin concentrations by ELISA in cell-free BAL at 6 h were more than twice as large for rats given CP9 (2,604 ± 252 μg/ml) compared with rats given CP9hlyA (1,189 ± 130 μg/ml) (P < 0.0005, Fig. 2A). Rats given LPS or saline had much lower BAL albumin concentrations (216 ± 13 μg/ml for LPS and 97 ± 19 μg/ml for saline, P < 0.0005 compared with CP9, Fig. 2A). Rats given CP9 also had increased total BAL protein based on colorimetric assay compared with rats given CP9.

Results

Fig. 1. Arterial oxygenation at 6 h postchallenge in rats given intratracheal *Escherichia coli* bacteria (CP9, CP9hlyA) or LPS. Rats received intratracheal CP9, CP9hlyA, LPS, or normal saline as defined in MATERIALS AND METHODS. Arterial oxygenation (PaO₂/FIO₂ ratio) was measured at 6 h postchallenge following a 5-min period of breathing 98% oxygen (FIO₂ = 0.98). Rats receiving CP9 [wild-type, hemolysin (Hly)-positive] had more severe respiratory impairments than those given CP9hlyA (Hly-minus), LPS, or saline. Data are means ± SE for n = 5–6. *P < 0.0005 or less compared with CP9; #P < 0.05 compared with CP9 or normal saline.
compared with those receiving LPS or saline ($P < 0.0005$ for saline and $P < 0.023–0.0001$ for LPS, Fig. 3).

The decreased arterial oxygenation and higher levels of albumin/protein in BAL in CP9-infected rats in Figs. 1–3 correlated with histological evidence of lung injury at 6 h postinfection (Fig. 4). Lung injury and cellular influx were not apparent in lung sections of rats instilled with normal saline (Fig. 4A). Lung sections of animals that received LPS (Fig. 4B), CP9 (Fig. 4C), or CP9hlyA (Fig. 4D) had similar degrees of cellular influx (mainly neutrophils) and perivascular edema around blood vessels associated with bronchi and bronchioles. However, the rank order of lung injury as demonstrated by disruption of the alveolar-capillary wall architecture, extravasated red blood cells, and intra-alveolar deposition of fibrin and cellular debris was CP9 > CP9hlyA > LPS.

Hly mediates significant lung surfactant abnormalities in rats at 6 h. Surfactant dysfunction was assessed by measurements of large aggregate percent content and surface activity in lavage from rats instilled intratracheally with CP9, CP9hlyA, or LPS (Figs. 5 and 6). Amounts of total phospholipid in cell-free BAL at 6 h were increased for rats given CP9 (0.66 ± 0.04 mg) or CP9hlyA (0.50 ± 0.04 mg) compared with LPS (0.41 ± 0.03 mg) or saline (0.37 ± 0.02 mg) ($P < 0.05$ or less). However, a much lower percentage of total phospholipid was contained in the large surfactant aggregate fraction in BAL from infected animals. The relative severity of surfactant dysfunction in terms of large aggregate percent content was ordered as CP9 (worst) > CP9hlyA > LPS (Fig. 5). Rats given CP9 had only 28 ± 2% of total BAL phospholipid in the large aggregate fraction compared with 43 ± 1% for rats given CP9hlyA, 46 ± 1% for rats given LPS, and 61 ± 3% for control rats given saline (all values are $P < 0.0005$ or less compared with CP9, Fig. 5). The surface activity of large surfactant aggregates obtained at 6 h from rats given CP9, CP9hlyA, or LPS was also significantly reduced compared with aggregates from control rats given normal saline (Fig. 6). Impairments in the surface tension lowering ability of large aggregates had the same relative order of severity of CP9 (worst) > CP9hlyA > LPS > saline found for large aggregate content (Fig. 5). Surface tension lowering curves for each of the four groups were significantly different from each other ($P < 0.0001$ or less for all group comparisons at a given time of bubble pulsation) (Fig. 6). After 20 min of bubble pulsation, resuspended large aggregate surfactant obtained at 6 h postinfection from rats given CP9 reached minimum surface tension values of 20.9 ± 0.7 mN/m compared with <1 mN/m for large aggregates from control rats given saline. At the same 20-min time of pulsation, minimum surface tension values for large aggregates from rats given CP9hlyA were also significantly elevated at 13.6 ± 1.1 mN/m, whereas large aggregates from rats given intratracheal LPS had minimum surface tensions of 4.4 ± 1.4 mN/m that were only slightly elevated over controls.

Hly increases the survival of E. coli in the rat pneumonia model at 6 h. To assess the effects of Hly on bacterial survival at 6 h postchallenge, titers of CP9 and CP9hlyA were measured. After challenge, wild-type CP9 E. coli were able to grow within the lungs, increasing in titer from 1.44 ± 0.02 × 10^7 cfu at 0 h to 9.1 ± 3.1 × 10^7 cfu at 6 h postinoculation (total lung titer). In contrast, the isogenic Hly-deficient derivative CP9hlyA underwent clearance, decreasing in titer from 1.18 ± 0.12 × 10^7 cfu at 0 h to 5.6 ± 1.6 × 10^6 cfu by 6 h
postinfection (Fig. 7). These data show that Hly contributes to the survival of *E. coli* within the lungs at 6 h but also suggest that some of the differences in surfactant and lung injury found above at this time between CP9 and CP9*hlyA* might have been influenced by the higher titer of CP9. To address this potential confounding variable, additional studies were carried out at 2 h postchallenge when the total lung titers of CP9 and CP9*hlyA* were not significantly different (1.76 ± 0.23 × 10^7 cfu for CP9 and 1.37 ± 0.30 × 10^7 cfu for CP9*hlyA*, Fig. 7). In addition, studies at 2 h also utilized the Hly overexpressing *E. coli* strain CP9*pEK50* at a slightly lower titer (6.1 ± 0.4 × 10^6). The results of experiments at 2 h are reported below.

Severity of lung injury and surfactant dysfunction at 2 h in rats given CP9, CP9*hlyA*, CP9*pEK50*, or saline. Experiments at 2 h postinfection utilized CP9 (wild-type, Hly-positive), CP9*hlyA* (Hly-minus), CP9*pEK50* (supraphysiological levels of Hly), and normal saline as a control. Rats infected with CP9*pEK50* or CP9 had decreased PaO2/FIO2 ratios and increased BAL albumin/protein concentrations at 2 h postbacterial challenge compared with rats given CP9*hlyA* (Fig. 8, A–C). Rats given CP9*pEK50* or CP9 had similar PaO2/FIO2 ratios of 163 ± 33 mmHg and 189 ± 25 mmHg, respectively, both of which met the oxygenation criteria for clinical ARDS (5). These PaO2/FIO2 ratios were significantly lower than found for rats given CP9*hlyA* (346 ± 51 mmHg, *P* < 0.01 or saline (384 ± 15 mmHg, *P* < 0.0005) (Fig. 8A). Albumin and total protein contents in cell-free BAL at 2 h postinfection were ordered as CP9/pEK50* (worst) > CP9 > CP9*hlyA* > saline controls. The concentration of albumin by ELISA for rats receiving CP9/pEK50* (1,890 ± 200 μg/ml) was greater than that of rats given CP9 (1,110 ± 104 μg/ml) (*P* < 0.01, Fig. 8B). Albumin concentrations for rats receiving CP9*hlyA* (584 ± 99 μg/ml) were significantly lower than for rats given either CP9/pEK50* (*P* < 0.0005) or CP9 (*P* < 0.01) and significantly larger than for saline controls (102 ± 34 μg/ml) (*P* < 0.0005) (Fig. 8B). Total protein levels in BAL by colorimetric assay followed a pattern identical to albumin (absolute levels of total protein and albumin were again not directly comparable because of assay differences). Total BAL protein was larger for rats given CP9/pEK50* (1,914 ± 115 μg/ml) compared with CP9 (1,533 ± 75 μg/ml) (*P* < 0.01, Fig. 8C). Total BAL protein for rats given CP9*hlyA* (679 ± 73 μg/ml) was significantly lower compared with CP9/pEK50* (*P* < 0.0005) or CP9 (*P* < 0.0005) and significantly higher than control rats given saline (112 ± 13 μg/ml) (*P* < 0.0005, Fig. 8C). Stained lung tissue sections at 2 h indicated a relative histological severity of injury ordered as CP9/pEK50* > CP9 > CP9*hlyA*, with alveolar-capillary wall destruction at this early time point present only in animals challenged with the supraphysiological, Hly-producing strain CP9/pEK50* (data not shown).

Consistent with the severe lung injury in rats given either CP9/pEK50* or CP9, both groups had significant detriments

Fig. 3. Leukocyte numbers in BAL from rats at 6 h postchallenge with *E. coli* or LPS. A: total red blood cells (RBCs); B: total leukocytes; C: neutrophils. Cells were harvested from BAL by immediate centrifugation at 150 g for 10 min and were enumerated by Coulter counting; neutrophil numbers were based on leukocyte differentials obtained from stained cytoslides (MATERIALS AND METHODS). Data are means ± SE for *n* = 5–6. *P* < 0.0005 or less compared with CP9 or CP9*hlyA*; #P < 0.05 compared with CP9 or CP9*hlyA*.
in the surface activity of large surfactant aggregates on the pulsating bubble apparatus (Fig. 9). Minimum surface tension values after 20 min of bubble pulsation were 16 ± 1 mN/m (CP9/pEK50), 15 ± 1 mN/m (CP9), 10 ± 1 mN/m (CP9hlyA), and 1 ± 0 mN/m (saline) (Fig. 9). Surface tension lowering curves for large aggregates from rats given CP9/pEK50 or CP9 were not statistically different from one another at bubble pulsation times of ≥5 min. However, surface tension lowering curves for large aggregates from rats given CP9hlyA or saline were statistically different from each other as well as from both CP9/pEK50 and CP9 at all

Fig. 5. Large surfactant aggregate content in cell-free BAL from rats at 6 h postchallenge with E. coli (CP9, CP9hlyA), LPS, or saline. Large surfactant aggregates were obtained by centrifugation of cell-free BAL at 12,500 g for 30 min. Aggregate content was determined as a percentage of total BAL phospholipid content based on phosphate assay. Rats given intratracheal CP9 (wild-type, Hly-positive) had a significantly lower content of large surfactant aggregates compared with rats receiving CP9hlyA (Hly-minus), LPS, or normal saline. Data are means ± SE for n = 6. *P < 0.0005 or less compared with CP9.

Fig. 6. Overall surface tension lowering ability of large surfactant aggregates from rats at 6 h postchallenge with E. coli (CP9, CP9hlyA) or LPS. Large surfactant aggregates were resuspended in 0.15 M NaCl + 2 mM CaCl2 at a uniform phospholipid concentration of 1 mg/ml and examined for surface activity on a pulsating bubble surfactometer (20 cycles/min, 37°C, 50% area compression). Surface tension at minimum bubble radius (minimum surface tension) is shown as a function of time of bubble pulsation. Surface activity of large aggregates was most impaired in rats receiving CP9 (Hly-positive) compared with CP9hlyA (Hly-minus), LPS, or normal saline. See text for details. Data are means ± SE for n = 6 animals.
time points of bubble pulsation ($P < 0.0005$ or less at a fixed time of pulsation).

In vitro studies showing that Hly lyses H441 cells directly, but not indirectly via Hly-mediated neutrophil lysis. It has recently been reported from our laboratory that Hly directly damages human neutrophils in vitro and can cause neutrophil necrosis in rats in vivo (47). This prior work suggests that Hly might mediate pulmonary damage either directly or indirectly via the release of histotoxic components from neutrophils. To test these possibilities in terms of potential lung epithelial cell lysis, a set of studies was done using the transformed H441 pulmonary epithelial cell line. First, the direct effects of Hly on H441 cells were studied by exposing these cells in culture to bacterial strains differing in their production of Hly and assessing lysis following 60 min of incubation at 37°C. The magnitude of H441 lysis was significantly greater when these cells were exposed to CP9 compared with the isogenic Hly-minus derivative CP9 \(hlyA \) (Fig. 10).

A final set of experiments addressed whether Hly-mediated neutrophil lysis could indirectly (secondarily) cause the lysis of H441 cells. To accomplish this, a trans-well assay system was utilized as detailed in MATERIALS AND METHODS. In brief, the top well of the system contained either CP9 alone, neutrophils...
alone (PMNs), or CP9 and neutrophils (this latter condition generated neutrophil lysis that was a required condition of the assay). The bottom well contained either H441 epithelial cells (Fig. 11, A or B, PMNs in the top well) or neutrophils (Fig. 11B, PMNs in the bottom well). When CP9 alone or neutrophils alone (PMNs), or CP9 and neutrophils (this latter condition generated neutrophil lysis that was a required condition of the assay). The bottom well contained either H441 epithelial cells (Fig. 11, A or B, PMNs in the top well) or neutrophils (Fig. 11B, PMNs in the bottom well). When CP9 alone or neutrophils alone (PMNs), or CP9 and neutrophils (this latter condition generated neutrophil lysis that was a required condition of the assay). The bottom well contained either H441 epithelial cells (Fig. 11, A or B, PMNs in the top well) or neutrophils (Fig. 11B, PMNs in the bottom well). When CP9 alone or neutrophils alone (PMNs), or CP9 and neutrophils (this latter condition generated neutrophil lysis that was a required condition of the assay). The bottom well contained either H441 epithelial cells (Fig. 11, A or B, PMNs in the top well) or neutrophils (Fig. 11B, PMNs in the bottom well). When CP9 alone or neutrophils alone (PMNs), or CP9 and neutrophils (this latter condition generated neutrophil lysis that was a required condition of the assay). The bottom well contained either H441 epithelial cells (Fig. 11, A or B, PMNs in the top well) or neutrophils (Fig. 11B, PMNs in the bottom well). When CP9 alone or neutrophils alone (PMNs), or CP9 and neutrophils (this latter condition generated neutrophil lysis that was a required condition of the assay). The bottom well contained either H441 epithelial cells (Fig. 11, A or B, PMNs in the top well) or neutrophils (Fig. 11B, PMNs in the bottom well). When CP9 alone or neutrophils alone (PMNs), or CP9 and neutrophils (this latter condition generated neutrophil lysis that was a required condition of the assay). The bottom well contained either H441 epithelial cells (Fig. 11, A or B, PMNs in the top well) or neutrophils (Fig. 11B, PMNs in the bottom well). When CP9 alone or neutrophils alone (PMNs), or CP9 and neutrophils (this latter condition generated neutrophil lysis that was a required condition of the assay). The bottom well contained either H441 epithelial cells (Fig. 11, A or B, PMNs in the top well) or neutrophils (Fig. 11B, PMNs in the bottom well). When CP9 alone or
phils alone were in the top well, no lysis of H441 cells in the bottom well occurred (Fig. 11A). In addition, no lysis of H441 cells in the bottom well was observed when CP9 and neutrophils were present together in the top well (conditions that resulted in neutrophil lysis) (Fig. 11A). Thus, under the conditions of this in vitro assay, Hly-mediated lysis of neutrophils did not cause indirect lysis of H441 cells. To confirm that histotoxic components of lysed neutrophils were able to diffuse from the top well into the bottom well, purified human neutrophils were placed in some of the bottom wells. In contrast to what was observed with H441 cells, neutrophils in the bottom well were significantly lysed when both neutrophils and CP9 were in the top well (Fig. 11B, PMNs in the bottom well). In addition, the lysis of neutrophils in the top well when CP9 bacteria were also present was confirmed for each experiment (Fig. 11B, PMNs in the top well).

DISCUSSION

This paper has examined the effects of the E. coli virulence factor Hly on surfactant dysfunction and acute pulmonary injury in rats in vivo using a wild-type extraintestinal pathogenic strain of E. coli (CP9) and isogenic derivatives that varied in their production of Hly, i.e., CP9hlyA (Hly-minus) or CP9/pEK50 (supraphysiological Hly). The presence of Hly in CP9 was shown to increase surfactant dysfunction based on reductions in large aggregate percent content and surface activity (Figs. 5, 6, and 9) as well as to worsen the severity of lung injury based on PaO2/FIO2 ratio, albumin/protein levels in BAL, and histological analysis of stained tissue sections compared with rats given CP9hlyA at 2 and 6 h postinfection (Figs. 1–4, and 8). In addition, rats given the Hly overproducing CP9/pEK50 mutant had the most severe permeability lung injury (highest levels of albumin/protein in BAL) of any group studied at 2 h postinfection (Fig. 8, B and C). Although rats challenged with CP9hlyA had less prominent surfactant deficits and lung injury severity than animals given CP9 or CP9/pEK50, these animals still had reduced aggregate surface activity, increased BAL protein, and impaired arterial oxygenation compared with saline controls (Figs. 1–6, 8, and 9). This indicates that factors in addition to Hly also contribute to pulmonary pathology in E. coli pneumonia. Surfactant abnormalities and lung injury were relatively small in rats challenged with LPS as opposed to live CP9 or CP9hlyA bacteria, showing that this purified toxin is a poor surrogate for traheally instilled live microorganisms in studying lung injury in pneumonia models.

In addition to investigating the influence of Hly on surfactant dysfunction and lung injury, experiments also assessed the effects of this virulence factor on bacterial clearance. The presence of Hly in CP9 led to higher total lung titers of this bacterium at 6 h, but not at 2 h, after intratracheal inoculation compared with rats given the Hly-minus mutant CP9hlyA (Fig. 7). This difference in bacterial titers was a potential confounding factor in establishing the contributions of Hly to surfactant dysfunction and lung injury at the 6-h time point. However, the fact that the same pattern of decreased large aggregate surface activity and increased lung injury severity for CP9 vs. CP9hlyA was found at 2 h postinfection (when the titers of the organisms were the same) clearly demonstrates that surfactant and pulmonary abnormalities were associated with the presence of Hly instead of with larger numbers of CP9 bacteria per se. This interpretation is also consistent with results showing that infection with the Hly overproducing mutant CP9/pEK50 generated even greater permeability lung injury than CP9 at 2 h postinfection (Fig. 8, B and C). In addition, in vitro studies showed that CP9 was able to directly induce the lysis of H441 transformed pulmonary epithelial cells (Fig. 10). Together, these data demonstrate that Hly is an important virulence factor in E. coli pneumonia and that its presence directly contributes to surfactant dysfunction based on decreased large aggregate content and surface activity and also to increased lung permeability injury.

The magnitude of the surface activity deficits measured for large surfactant aggregates in our study likely underestimates the actual functional deficits in surface tension lowering that occurred in the alveoli of E. coli-infected animals in vivo. This is because our experiments examined the intrinsic surface activity of large surfactant aggregates resuspended at a uniform concentration in 0.15 M NaCl + 2 mM CaCl2 for bubble surfactometer assessments to facilitate activity comparisons between groups. However, the original BAL fluid recovered from injured animals contained substantial amounts of albumin (Figs. 2 and 8), which along with other plasma proteins is known to inhibit lung surfactant surface activity (e.g., Refs. 22, 23, 37). It is highly probable that surface activity deficits would have been more severe than reported in Figs. 6 and 9 if all of the original inhibitory BAL protein had remained present during bubble measurements. This effect would be expected to be most pronounced in BAL from rats infected with CP9 or CP9/pEK50, which originally contained the greatest amounts of protein (Figs. 2 and 8). The decreases found in the intrinsic surface activity of large aggregates in the present work likely were caused in part by plasma proteins that became associated with surfactant aggregates in BAL and were thus present during bubble measurements. Davidson et al. (12) have recently shown that plasma proteins can become incorporated into large surfactant aggregates during gastric aspiration lung injury in rats, resulting in a decrease in the intrinsic surface activity of aggregates as found here in E. coli pneumonia (Figs. 6 and 9). In addition, lipids and/or apoproteins in lung surfactant aggregates from animals with inflammatory lung injury can become chemically degraded or altered in compositional ratio (12).

A second aspect of surfactant dysfunction in our experiments was a decreased percent content of large surfactant aggregates in cell-free BAL from rats receiving CP9 compared with CP9hlyA (Hly-minus) or LPS (Fig. 5). Large surfactant aggregates obtained by centrifugation from cell-free BAL from normal animals have greater surface activity and apoprotein content compared with smaller aggregates (Refs. 37 and 59 for review). Large surfactant aggregates in lavage have been reported to be depleted in percent content during several forms of acute pulmonary injury (7, 12, 18, 20, 28, 53). A variety of centrifugation methods and conditions are utilized to obtain large surfactant aggregates from cell-free BAL, and our experiments focused on an aggregate fraction obtained by simple centrifugation at 12,500 g. This centrifugation condition has been used previously to obtain highly active large surfactant aggregates for the preparation of calf lung surfactant extract, which is the basis of the clinical exogenous surfactant Infasurf treatment.
live bacterial components. As noted earlier, the importance of using responses by pathways not present with the use of purified bacterial-host cell interactions that could modify pulmonary presentation compared with purified bacterial products. The CP9 guaranteed a physiologically relevant level of expression involved the use of live extraintestinal dressed in more detail in future work.

One significant design aspect of the present experiments involved the use of live extraintestinal E. coli (i.e., CP9 and isogenic derivatives lacking or overexpressing Hly). The use of CP9 guaranteed a physiologically relevant level of expression for Hly in vivo as well as a physiological manner of host presentation compared with purified bacterial products. The use of live organisms also allowed the potential for direct bacterial-host cell interactions that could modify pulmonary responses by pathways not present with the use of purified bacterial components. As noted earlier, the importance of using live E. coli organisms was apparent when the effects of LPS were compared with live E. coli. Surfactant dysfunction and lung injury were significantly less severe in animals instilled with LPS (3.6 mg/kg body wt) compared with live CP9 and CP9/hlyA bacteria (Figs. 1–6).

Another technical issue in this study was the use of H441 cells to assess whether the effects of Hly on cell injury were directly or indirectly mediated by Hly-induced neutrophil lysis. Mechanisms by which Hly might mediate pulmonary damage potentially include causing direct injury or lysis of lung cells or, alternatively, inducing such effects indirectly via Hly-mediated release of histotoxic components from neutrophils (47). As noted earlier, Hly in CP9 had a direct effect in increasing the lysis of H441 epithelial cells compared with the Hly-negative strain CP9/hlyA (Fig. 10). However, some lysis of H441 cells still occurred for the latter Hly-negative strain compared with saline controls, indicating that bacterial virulence factors other than Hly also promote epithelial cell lysis. It is also noteworthy that while Hly in CP9 did increase H441 cell lysis in vitro (Fig. 10), relatively high bacterial titers of 1 × 10⁹ cfu/ml were required. Unpublished data from our laboratory indicate that 2 logs less of CP9 are able to nearly completely lyse freshly purified rabbit alveolar epithelial cells in vitro. The high titers of CP9 needed to lyse H441 cells in the present experiments indicate that this transformed pulmonary cell line may have increased resistance to bacteria-induced lysis compared with normal epithelial cells. Thus our inability to demonstrate that Hly-induced neutrophil lysis could secondarily cause the lysis of H441 cells in vitro (Fig. 11) does not exclude the possibility that such an effect could occur with pulmonary epithelial cells in vivo. Further studies will be required to investigate this issue as well as the mechanistic contributions of specific pulmonary inflammatory/immune responses to surfactant dysfunction and cellular injury in the rat E. coli pneumonia model.

In summary, the results of this study demonstrate that substantial surfactant dysfunction is present in the pathophysiology of E. coli-induced lung injury and is worsened in the presence of the bacterial virulence factor Hly. Pulmonary surfactant plays essential roles in reducing the work of breathing, normalizing lung mechanics and gas exchange, and protecting against edema (37, 38). The finding that lung surfactant abnormalities contribute functionally to E. coli-induced pneumonitis suggests that exogenous surfactant replacement therapy may prove beneficial in treating this condition. A number of studies have demonstrated that exogenous surfactant supplementation interventions can improve lung function and/or outcome in animal models of ALI/ARDS associated with pulmonary bacterial infection or endotoxin administration (e.g., Refs. 13, 30, 31, 50, 52). Studies on the efficacy of natural and synthetic exogenous lung surfactant formulations in improving lung function and outcome in gram-negative pneumonia in the rat model examined in this paper are currently in progress in our laboratory.

ACKNOWLEDGMENTS

We gratefully acknowledge the assistance of Dr. James Woytash in histological evaluations of lung injury pathology in fixed tissue.

GRANTS

Financial support through a Veterans Affairs Merit Review from the Department of Veterans Affairs (T. A. Russo) and the John R. Oishei Foundation (T. A. Russo) as well as from National Institutes of Health Grants HL-69763 (T. A. Russo), HL-56176 (R. H. Notter), HL-48889 (P. R. Knight 3rd), and AI-46534 (P. R. Knight 3rd) is also gratefully acknowledged.

REFERENCES

