A role for CFTR in the elevation of glutathione levels in the lung by oral glutathione administration

Chirag Kariya,1,5 Heather Leitner,1,5 Elycia Min,1 Christiaan van Heeckeren,6 Anna van Heeckeren,6 and Brian J. Day1,2,3,4,5

Departments of 1Medicine and 2Immunology, National Jewish Medical and Research Center, Departments of 3Medicine, 4Immunology, and 5Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver, Colorado; and 6Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio

Submitted 15 September 2006; accepted in final form 4 March 2007

Kariya C, Leitner H, Min E, van Heeckeren C, van Heeckeren A, Day BJ. A role for CFTR in the elevation of glutathione levels in the lung by oral glutathione administration. Am J Physiol Lung Cell Mol Physiol 292: L1590–L1597, 2007. First published March 16, 2007; doi:10.1152/ajplung.00365.2006.—The cystic fibrosis transmembrane conductance regulator (CFTR) protein is the only known apical glutathione (GSH) transporter in the lung. The purpose of these studies was to determine whether oral GSH or glutathione disulfide (GSSG) treatment could increase lung epithelial lining fluid (ELF) GSH levels and whether CFTR plays a role in this process. The pharmacokinetic profile of an oral bolus dose of GSH (300 mg/kg) was determined in mice. Plasma, ELF, bronchoalveolar lavage (BAL) cells, and lung tissue were analyzed for GSH content. There was a rapid elevation in the GSH levels that peaked at 30 min in the plasma and 60 min in the lung, ELF, and BAL cells after oral GSH dosing. Oral GSH treatment produced a selective increase in the reduced and oxidized GSH levels, a fivefold increase in ELF, and a threefold increase in BAL cell GSH levels. There was a twofold increase in plasma, a twofold increase in lung, a fivefold increase in ELF, and a threefold increase in BAL cell GSH levels at 60 min in wild-type mice; however, GSH levels only increased by 40% in the plasma, 60% in the lung, 50% in the ELF, and twofold in the BAL cells within the gut-corrected Cfr KO-Tg mice. No change in GSH levels was observed in the uncorrected Cfr KO mice. These studies suggest that CFTR plays an important role in GSH uptake from the diet and transport processes in the lung.

Address for reprint requests and other correspondence: B. J. Day, National Jewish Medical and Research Center, A439, 1400 Jackson St., Denver, CO 80206 (e-mail: dayb@njc.org).

The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

The respiratory tract is constantly challenged by a number of environmental agents including ozone, particulate matter, nitrogen oxides, cigarette smoke, and microbes. The epithelial lining fluid (ELF) is first to encounter these agents and serves as the body’s initial line of defense. ELF is well represented in ELF and BAL cells, nor the role of CFTR in mediating these changes. We hypothesized that oral GSH and/or GSSG treatments in mice could elevate GSH levels in ELF and BAL cells and that the CFTR protein plays a role in these processes. We tested this hypothesis using mouse models of CF: Cfr knockout (KO) and gut-corrected Cfr KO-transgenic (Tg) mice. Our laboratory reports that GSH levels can be increased in lung, ELF, and BAL cells and that among these airway antioxidants because it is selectively concentrated in the ELF compared with plasma (46). The ELF GSH concentration is 100-fold greater than its circulating level in plasma (11). ELF GSH levels are elevated following primary lung infection with Pseudomonas aeruginosa (15), in asthmatics (14), in chronic beryllium disease (13), and in chronic smokers (11, 13). In many of these cases, the elevated GSH levels are thought to be a lung-adaptive response to oxidants. On the other hand, basal GSH levels in ELF are low in individuals who are acute smokers (42), in human immunodeficiency virus-positive subjects (36), and in a number of progressive lung disorders including idiopathic pulmonary fibrosis (IPF) (10), acute respiratory distress syndrome (ARDS) (5, 37), and cystic fibrosis (CF) (45). Decreased levels of ELF GSH may make the lung more susceptible to exogenous agents and contribute to chronic oxidative stress. The pathways by which the lung modulates ELF GSH levels are relatively unknown.

CF is a lethal hereditary disease caused by numerous autosomal recessive mutations of the 250-kb CF transmembrane conductance regulator (CFTR) protein located on chromosome 7 (41). It is estimated that nearly 30,000 Caucasians in North America and more than 200,000 individuals worldwide are affected by this disease (1). Studies suggest that the CFTR channel not only regulates chloride transport but also other anions including bicarbonate and GSH (34). Studies performed in our laboratory and by others have confirmed that CFTR is partly responsible for the transport of GSH across lung secretory epithelium (20, 32, 52). Thus it is hypothesized that the CFTR protein plays a prominent role in ELF GSH transport and that a defective CFTR protein would cause alterations in lung GSH distribution.

Previous studies have reported that GSH concentration in blood and lung can be increased following oral administration (2, 18). However, none of the previous oral studies have determined GSH changes associated with lung compartments such as the ELF and bronchoalveolar lavage (BAL) cells, nor the role of CFTR in mediating these changes. We hypothesized that oral GSH and/or GSSG treatments in mice could elevate GSH levels in ELF and BAL cells and that the CFTR protein plays a role in these processes. We tested this hypothesis using mouse models of CF: Cfr knockout (KO) and gut-corrected Cfr KO-transgenic (Tg) mice. Our laboratory reports that GSH levels can be increased in lung, ELF, and BAL cells and that...
intracellular GSH concentration in BAL cells may be dependent on ELF GSH levels. We also demonstrate the importance of lung and intestinal CFTR in these processes.

MATERIALS AND METHODS

Animals. Adult wild-type male C57BL/6J mice (24.6 ± 0.2 g) were purchased from Jackson Laboratories (Bar Harbor, ME). They were fed Purina mouse chow 5010 and autoclaved tap water ad libitum. C57BL/6J congenic Cfr KO (S489X) mice (22.3 ± 0.2 g) that possessed the S489X mutations in the murine equivalent to CFTR (47) and C57BL/6J congenic gut-corrected Cfr KO-Tg mice (23.7 ± 0.3 g) that had intestinal specific expression of normal human Cfr driven by the fatty acid binding promoter (57) were employed in these studies. These mice were originally obtained from Case Western Reserve University’s CF Animal Core, as previously described (49). The gut-corrected Cfr KO-Tg mice were fed Purina mouse chow 5010, and the Cfr KO were maintained on a liquid elemental diet (Peptamen; Nestle, Glendale, CA) to avoid lethal intestinal obstructions previously reported in these mice (24, 47). Autoclaved tap water in bottles with sipper tubes was provided. Mice were pathogen free and housed in microisolator cages with lights cycled 12 h on and 12 h off. Genotypes for each mouse were determined by PCR with DNA isolated from tail clips as described (47, 57). All mice were removed from food 8 h before dosing. Animal studies were approved by the National Jewish Medical and Research Center Animal Care and Use Committee.

Oral GSH administration. Wild-type mice were administered a single bolus dose (300 mg/kg) of GSH (Sigma, St. Louis, MO) by gavage using a flexible bead-tipped feeding tube 20 G × 1.5 inches (Braintree Scientific, Braintree, MA). Stock solution of GSH was prepared fresh daily in PBS at pH 7. Control mice received PBS (125 μl) as vehicle controls. Mice were killed at 0, 15, 30, 60, 120, or 240 min after treatment. Plasma, BAL fluid (BALF), and lung tissue were collected at all time points. Wild-type mice also received a single bolus dose (300 mg/kg) of GSSG (Sigma) by gavage as described above. Stock solution of GSSG was prepared fresh daily in PBS at pH 7. Control mice received PBS (125 μl) as vehicle control. Mice were killed 60 min after treatment. Plasma, BALF, and lung tissue were collected and analyzed for GSH levels. Groups of four to six Cfr KO mice (both gut-corrected and noncorrected) were dosed with GSH (300 mg/kg) by gavage and plasma, BALF, and lung tissue collected 60 min after treatment.

Isolation of BALF, plasma, and lung tissue. Mice were killed by administering pentobarbital (65 mg/kg ip), exsanguinated by cardiac puncture, and vascularly perfused with 0.9% saline. Blood was collected to measure GSH and perform urea analysis as described by the manufacturer (Sigma Diagnostics). Urea analysis was used to normalize data by accounting for the BAL dilution where ELF GSH concentrations were determined by multiplying the BALF concentrations previously reported in these mice (24, 47). Autoclaved tap water in bottles with sipper tubes was provided. Mice were pathogen free and housed in microisolator cages with lights cycled 12 h on and 12 h off. Genotypes for each mouse were determined by PCR with DNA isolated from tail clips as described (47, 57). All mice were removed from food 8 h before dosing. Animal studies were approved by the National Jewish Medical and Research Center Animal Care and Use Committee.

RESULTS

Pharmacokinetic profile of oral GSH administration in wild-type mice. Following oral administration of 300 mg/kg of GSH, plasma GSH levels peaked at 30 min posttreatment (Fig. 1A). The GSH peak corresponded to a threefold increase over control mice and returned to basal levels at 240 min posttreatment. The elimination half-life of plasma GSH was estimated to be 27 min, and the distribution half-life was estimated to be 22 min. A similar profile was observed for the lung except that peak GSH levels were delayed, peaking 60 min posttreatment (Fig. 1B). The change in lung GSH content corresponded to a twofold increase over basal levels. Lung tissue GSH levels returned to basal levels at 240 min posttreatment, with an elimination half-life estimated to be 54 min and a distribution half-life estimated to be 30 min. ELF represents the first line of defense against environmental agents. Hence, we were interested in determining the effects...
of oral GSH administration on ELF GSH levels. To our surprise, we saw a fivefold increase in ELF GSH levels over basal levels at 60 min (Fig. 1C). As seen with lung tissue, ELF GSH levels returned to basal levels by 240 min posttreatment with an estimated elimination half-life of 60 min and a distribution half-life estimated to be 30 min. Since BAL cells are present in ELF and play important roles in lung host defense, we also measured changes in their GSH levels. Following oral administration of GSH, we observed peak BAL cell GSH concentrations at 60 min posttreatment (Fig. 1D). This change in GSH corresponded to a threefold increase over basal levels, with an estimated elimination half-life of 60 min and a distribution half-life estimated to be 50 min. BAL cell GSH levels remained elevated at 240 min posttreatment. Pharmacokinetic modeling was used to estimate distribution and elimination half-lives and apparent volume of distribution based on the changes in plasma and lung GSH content (Table 1).

Changes in plasma and lung GSH and GSSG levels after oral GSH administration. Wild-type mice were gavaged with 300 mg/kg of GSH, and 60 min later their GSH and GSSG levels were determined in plasma and lung using HPLC coupled with fluorometric detection (Table 2). Both HPLC GSH methods gave similar results. Oral GSH administration was associated with twofold increases in plasma GSH and GSSG levels; however, changes in GSSG did not reach statistical significance. ELF GSH levels increased fourfold without any significant increases in GSSG levels. Oral GSH administration produced similar elevations in lung tissue and BAL cell GSH levels without significant changes in GSSG levels. These data suggest that oral GSH administration can effectively elevate the reduced and active form of GSH in the lung. The significance of selectively raising the reduced form of GSH in fluids and tissues is a resulting change in redox state that renders the compartments more resistant to oxidative damage.

Effect of oral GSSG administration in wild-type mice. Wild-type mice received 300 mg/kg of GSSG by gavage, and plasma, lung, ELF, and BAL cell GSH levels were measured 60 min later. There was a 40% increase in plasma GSH concentration in GSSG-treated animals compared with basal levels (Fig. 2A). There was a similar increase in lung GSH levels compared with basal levels (Fig. 2B). There was a 40% increase in ELF GSH levels in GSSG-treated wild-type animals compared with basal levels, although this increase was not as large as those seen with oral GSH treatment at the same time point (Fig. 2C). There was a 50% increase in BAL cell GSH level in GSSG-treated wild-type animals compared with basal levels (Fig. 2D). Overall, these increases in GSH levels from oral GSSG administration were not as great as that observed with oral GSH administration, suggesting that the reduced form is more easily utilized by the body.

Effect of oral GSH administration in gut-corrected Cftr KO-Tg and uncorrected Cftr KO mice. We report that oral administration of GSH in wild-type mice can raise GSH levels in different lung compartments, with maximum increases occurring as early as 60 min postdose (Table 1). Since CFTR dysfunction results in decreased steady-state levels of GSH in the ELF (45, 52), we were interested in determining whether oral GSH supplementation can increase GSH levels in different lung compartments of gut-corrected (Cftr-Tg) and uncorrected Cftr KO mice. We chose to examine this effect in both the uncorrected and the CFTR intestinal (gut) corrected mice to...
CFTR and Lung GSH Bioavailability

Table 1. Pharmacokinetics of GSH in plasma and lung compartments

<table>
<thead>
<tr>
<th>Compartment</th>
<th>ELF</th>
<th>BAL Cells</th>
<th>Lung</th>
<th>Plasma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cmax (µM)</td>
<td>1.131 ± 0.39</td>
<td>15.1 ± 1</td>
<td>4.3 ± 0.3</td>
<td>90 ± 1.3</td>
</tr>
<tr>
<td>Tmax (h)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>Distribution t½/2 (min)</td>
<td>30</td>
<td>50</td>
<td>30</td>
<td>22</td>
</tr>
<tr>
<td>Elimination t½/2 (min)</td>
<td>60</td>
<td>60</td>
<td>54</td>
<td>27</td>
</tr>
</tbody>
</table>

Data are expressed as means ± SE. ELF, epithelial lining fluid; BAL, bronchoalveolar lavage. Cmax is the maximum concentration reached; Tmax is the time at which the Cmax occurs.

address any concerns with intestinal expression of CFTR on GSH bioavailability from an oral dose. Mice received a single bolus GSH dose (300 mg/kg) by gavage and were killed at 60 min posttreatment.

Basal plasma GSH levels were similar between wild-type and gut-corrected Cfr-Tg KO mice with the uncorrected Cfr KO mice having slightly lower basal plasma levels that did not reach statistical significance (Fig. 3). Wild-type mice had a twofold increase in plasma GSH levels 60 min postdose, whereas the gut-corrected Cfr KO-Tg mice had a much smaller 40% increase. The uncorrected Cfr KO mice showed no change in plasma GSH levels, suggesting an important role of CFTR in the bioavailability of GSH in the alimentary tract.

Next, we examined changes in lung tissue GSH levels between wild-type, gut-corrected Cfr KO-Tg and uncorrected Cfr KO mice 60 min postoral GSH treatment. Basal lung GSH levels were similar between wild-type and both the gut-corrected Cfr KO-Tg and uncorrected Cfr KO mice (Fig. 4). There was a twofold increase in lung GSH levels in the wild-type lung content 60 min after GSH treatment. In comparison, the gut-corrected Cfr KO-Tg mice had only a 60% increase in lung GSH levels after GSH treatment. We did not see any significant increases in the lung GSH levels after GSH treatment in the uncorrected Cfr KO mice. These data are consistent with the lack of change in plasma GSH in the uncorrected Cfr KO mice.

Changes in the lung ELF GSH content were compared among wild-type, gut-corrected Cfr KO-Tg, and uncorrected Cfr KO mice 60 min following oral administration of GSH. Basal ELF GSH levels were 50% lower in both the gut-corrected and uncorrected Cfr KO mice compared with the wild-type mice (Fig. 5). Oral GSH treatment produced a nearly sixfold increase in ELF GSH concentrations in wild-type mice. In comparison, there was only a 50% increase in ELF GSH levels in gut-corrected Cfr KO-Tg compared with basal levels. Interestingly, the uncorrected Cfr KO mice failed to show any increases in ELF GSH levels after oral GSH treatment. To rule out possible loss of observed GSH from the artificial formation of S-nitrosoglutathione from acidified nitrite, we measured the basal ELF nitrite levels in wild-type, gut-corrected Cfr KO-Tg, and uncorrected Cfr KO mice. There were no significant changes in the ELF nitrite levels among different mouse strains (data not shown).

Finally, we looked at changes in GSH levels in BAL cells among wild-type, gut-corrected, and uncorrected Cfr KO mice 60 min after GSH dosing. Basal BAL cell GSH levels were similar between the wild-type mice and both the gut-corrected and uncorrected Cfr KO mice (Fig. 6). Oral GSH treatment produced a threefold increase in BAL cell GSH levels in the wild-type mice but only a twofold increase in the gut-corrected Cfr KO-Tg mice. Again, no changes in BAL cell GSH content were observed in the uncorrected Cfr KO mice after oral GSH treatment.

Discussion

It has been hypothesized that the ELF GSH deficiency plays an important role in pathophysiology of a number of pulmonary disorders including IPF, CF, ARDS, and acquired immunodeficiency syndrome (28). Hence, it is logical to study whether oral administration of GSH would be beneficial in increasing GSH levels in lung compartments. Previous studies have shown that oral GSH administration can raise serum and lung tissue GSH levels in rodents (2, 18) but did not measure pharmacokinetic parameters or examine compartments within the lung. The present studies have created a pharmacokinetic profile for oral GSH administration in serum and lung compartments of wild-type mice and examined the role of CFTR in these processes. An important assumption one needs to make is that these changes in the GSH content are from the exogenously administered GSH. We acknowledge that the observed changes reported herein are steady-state levels and are likely a combination of GSH breakdown, resynthesis, and transport. The major finding of our current investigation is that GSH concentrations can be significantly increased in plasma, lung tissue, ELF, and BAL cells after oral administration, and this is dependent on functional lung and intestinal CFTR. Our studies also suggest that GSH levels in BAL cells may change in

Table 2. Plasma and lung GSH and GSSG changes following oral administration of GSH

<table>
<thead>
<tr>
<th></th>
<th>GSH</th>
<th>GSSG</th>
<th>GSH/GSSG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Basal</td>
<td>60 min</td>
<td>Basal</td>
</tr>
<tr>
<td>Plasma, µM</td>
<td>22 ± 0.9</td>
<td>57 ± 2.5*</td>
<td>5.0 ± 0.9</td>
</tr>
<tr>
<td>Lung tissue, nmol/mg tissue</td>
<td>2.3 ± 0.2</td>
<td>4.3 ± 0.2*</td>
<td>0.3 ± 0.04</td>
</tr>
<tr>
<td>ELF, µM</td>
<td>233 ± 28.3</td>
<td>847 ± 25.3*</td>
<td>36.4 ± 5.5</td>
</tr>
<tr>
<td>BAL cells, nmol/mg protein</td>
<td>7.7 ± 0.5</td>
<td>11.7 ± 0.6*</td>
<td>0.7 ± 0.09</td>
</tr>
</tbody>
</table>

Values are expressed as means ± SE. *Significantly different from basal levels (P < 0.05). P values represent statistical significance using Student’s t-test.
relationship to the GSH concentration in the ELF. Further studies with radiolabeled GSH will be required to tease apart the importance of these pathways to the overall observed changes in lung GSH reported herein.

There was a significant increase in plasma GSH levels in wild-type mice 1 h following the oral administration of both reduced and oxidized forms of GSH. This finding is in agreement with previous studies where oral GSH administration increased plasma GSH levels in mice and rats (2, 18). This is in contrast to the reported lack of an increase in plasma GSH levels from oral GSH administration in the human (55). Possible explanations for these discrepancies are the much lower dose of GSH used in the human studies compared with rodents (50 mg/kg vs. 100–300 mg/kg, respectively) and that there may be species specific differences in intestinal transport processes. The gut-corrected Cftr KO-Tg mice had about one-half of the increase in plasma GSH levels 1 h following oral GSH administration as seen in wild-type mice. The non-corrected Cftr KO mice were unable to raise plasma GSH levels after oral GSH administration. A potential explanation for only a partial increase of plasma GSH in the gut-corrected Cftr KO-Tg mice is that unlike endogenous CFTR, the Cftr transgene is not expressed in crypts, but in villi, of Cftr KO-Tg mice (57). Overall, these data imply that having a functional CFTR in the intestine is very important for the utilization of dietary GSH and that malabsorption and/or utilization of dietary antioxidants, including GSH, may set up for a systemic oxidative stress in CF.
Previous studies have shown that lung GSH levels are not significantly different in Cfr KOs from wild-type mice (52). We show a significant increase in lung GSH levels in wild-type animals and in gut-correction Cfr KO-Tg mice, but not in uncorrected Cfr KO after oral GSH administration. The CF lung is under chronic oxidative stress due to exogenous and endogenous generation of free radicals (8, 16). Previous studies in our laboratory have shown that Cfr KO mice have some basal oxidative stress as indicated by an increase in the oxidation of DNA and the increased activities of antioxidant enzymes, such as glutathione peroxidases and glutathione disulfide reductase (52). This increased demand on GSH supply may limit GSH availability to maintain steady-state and adaptive GSH levels in the ELF.

ELF GSH and other antioxidants serve as a first point of defense against free radicals and help to maintain the cellular redox balance. The redox status of a cell is an important determinant in modulation of inflammatory responses (38). Any deficiency in GSH can increase the steady-state level of oxidants that may lead to tissue destruction. Previous studies have shown that ELF GSH levels are low in Cfr KO mice compared with wild-type mice, and this deficiency is associated with increased oxidative stress (51). P. aeruginosa infections are associated with lung neutrophilia that upon activation release large amounts of myeloperoxidase (35, 48, 54). Myeloperoxidase has antimicrobial effects due to its formation of strong oxidants such as hypochlorous acid. GSH is a very effective scavenger of hypochlorous acid (39). Our laboratory has shown that infections with P. aeruginosa can increase ELF GSH levels in wild-type animals to counter the oxidative stress induced by this pathogen. However, this adaptive response is severely blunted in Cfr KO animals, resulting in oxidative stress (15) and increased mortality (26). Overall, these studies point out the importance of ELF GSH in maintaining normal lung epithelium homeostasis and the possible benefits of methods to augment ELF GSH levels.

It is known that GSH plays a prominent role in immune responses (17, 23, 29, 38), extracellular matrix remodeling (50, 56), and in inflammatory responses (43). Chronic bronchopulmonary infection is a hallmark feature in CF patients. A number of investigators have implicated a defective host defense response in CF (19, 40, 53). To clear microorganisms, neutrophils are recruited, which can release reactive oxygen species causing further depletion of antioxidants and oxidative stress. Previous studies have shown that GSH plays an important role in modulating inflammatory and immune responses (42). Inhalation of GSH has been shown to decrease the levels of superoxide generated in BAL cells from CF subjects (44). GSH also helps in T cell activation and proliferation, important immune responses needed to adequately clear microbial infections. Also, the literature suggests that lymphocyte activation is dependent on GSH levels (29). Interestingly, in our study, we observed that BAL cell GSH levels could be raised following oral GSH administration in wild-type and gut-corrected Cfr KO-Tg mice. This increase correlated well with increases in ELF GSH levels in both strains. However, uncorrected Cfr KO mice failed to raise their ELF cell GSH levels. This novel observation suggests that functional CFTR not only plays an important role in transporting GSH from the lung into the ELF but also may indirectly affect the GSH levels in BAL cells.

Given the number of lung disorders that have low basal ELF GSH levels, the rationale of increasing GSH is logical. Numerous studies have been performed to increase the lung GSH levels using GSH or its precursors, including N-acetyl cysteine or cysteine esters (6, 7, 33). N-acetyl cysteine did not increase the GSH concentrations significantly in the plasma or in the lung compartment of chronic obstructive pulmonary disorder patients compared with controls even at the high dose of 600 mg three times daily for 5 days (7). Attempts have also been made to increase the ELF GSH by means of aerosol delivery (3, 4, 9, 22, 27, 44), intravenous administration (9, 30), and oral administration of GSH (2, 18, 55). Inhalation of GSH increased the ELF GSH levels, but it also increased the levels of GSSG (44). Interestingly, we observed that oral administration of GSH could effectively elevate ELF GSH levels without associated increased GSSG levels. The increase in the levels of GSSG could be problematic in asthmatics, because GSSG can exacerbate the bronchiolar constriction. In addition, aerosolized GSH was not found to change the levels of oxidized proteins in BAL from CF (22). We observed a nearly sixfold increase in ELF GSH levels in wild-type animals at 60 min posttreatment, suggesting that it is possible to raise the ELF GSH levels via
oral administration. It was also possible to increase the GSH levels in ELF of Cftr KO-Tg animals, but to a lesser extent. In contrast, the uncorrected Cftr KO mice failed to show any increase in ELF GSH over wild-type animals. Nutritional status of CF patients has long been known to affect mortality and morbidity. Investigators have shown that dietary supplementation with whey products can affect GSH status in CF subjects (21). Both the reduced and oxidized forms of GSH when given orally increase plasma and BAL cell GSH levels. GSH is the most abundant thiol in plants and animals and would make up a large amount of dietary cysteine in our daily diet. Studies have also shown that GSH levels have diurnal fluctuations that may be linked to rodent feeding patterns (30). It is tempting to speculate that diet may contribute to one’s GSH status and that GSH could be utilized directly or indirectly from our diet. These findings also raise a question on whether CF subjects can be effectively treated by only correcting lung CFTR deficiency.

In summary, this study indicates that oral GSH administration can increase plasma and lung compartment GSH levels in wild-type mice and to a lesser extent in gut-corrected Cftr KO-Tg animals. It also suggests that oral GSH treatment can boost BAL cell GSH levels. However, since this study failed to show significant increases in serum and lung compartment GSH levels in uncorrected Cftr KO mice, it is questionable whether oral GSH administration to CF patients with intestinal malabsorption would benefit from this therapy. We also show that GSH is rapidly distributed to the serum and lung compartments. We speculate that in addition to CFTR, there are other transporters(s) responsible for transporting GSH and probably other important dietary molecules to the lung, which may be responsible for dietary deficiencies observed in various lung diseases.

GRANTS

These studies were supported in part by funding from a Cystic Fibrosis Foundation grant (B. J. Day) and National Institutes of Health Grants RO1-HL075523 (B. J. Day) and P30-DK-027651 (A. VHI).

REFERENCES

