ASSISTANT PROFESSOR, ASSOCIATE PROFESSOR OR PROFESSOR (Tenure-Track)
PULMONARY, ALLERGY AND CRITICAL CARE MEDICINE
DEPARTMENT OF MEDICINE, UNIVERSITY OF MINNESOTA

The Pulmonary, Allergy and Critical Care Division of the Department of Medicine, University of Minnesota seeks up to two academic physician-scientist faculty members at the Assistant Professor, Associate Professor or Professor level in the tenure track. These individuals will join an expanding Division and the new Center for Lung Science and Health. Candidates must be board certified by the American Board of Internal Medicine in Internal Medicine, Pulmonary and Critical Care Medicine or in Allergy and Clinical Immunology. Individuals will spend the majority of time in research, along with some patient care and teaching. Applicants must have current external research funding and will be expected to continue to successfully compete for grant support; appropriate initial support packages are available. Research may be of either a basic laboratory-based or clinical-translational nature, including clinical trials, outcome, health services and epidemiologic research. Academic rank, salary and benefits will be competitive and commensurate with experience. Areas of particular interest include: lung immunology; asthma; allergy; lung stem cell biology; pulmonary vascular biology; lung cancer; sleep medicine; and alveolar epithelial cell function. Faculty will be expected to participate in relevant University centers, such as the Comprehensive Cancer Center, Vascular Biology Center; Center for Immunology; Lillehei Heart Institute and Stem Cell Institute. Qualifications: 3 year residency in Internal Medicine with fellowship training and Board Certification in Pulmonary and Critical Care Medicine or in Allergy and Clinical Immunology. For sleep medicine, candidates should be judged capable of passing the ABIM Sleep Board exam in fall 2008.

Applications (including curriculum vitae and a minimum of three letters of recommendation) should be sent to:

David H. Ingbar, M.D.
Pulmonary, Allergy and Critical Care Division
MMC #276
420 Delaware Street SE
Minneapolis, MN 55455

Last day for receipt of applications: ongoing
Start date: July 1, 2007

The University of Minnesota is an Equal Opportunity Educator and Employer.

SEX STEROIDS AND GENDER IN CARDIOVASCULAR-RENAL PHYSIOLOGY AND PATHOPHYSIOLOGY

AUGUST 9-12, 2007, AUSTIN, TEXAS

PRELIMINARY PROGRAM

SEX STEROIDS IN CLINICAL AND EPIDEMIOLOGICAL STUDIES
Jane F. Reckelhoff (Chair)

UPDATE ON SEX STEROID RECEPOTRS AND CARDIOVASCULAR DISEASES
Patrice Lane (Chair)

SEX STEROIDS AND METABOLIC SYNDROME
Carmen Hinojosa-Laborde (Chair)

SEX STEROIDS, THE RENIN-ANGIOTENSIN SYSTEM AND HYPERTENSION
Kathryn Sandberg (Chair)

SEX STEROIDS AND TARGET ORGAN INJURY
Darial Pollock (Chair)

SEX STEROIDS, PREGNANCY, PRE-ECLAMPSIA, AND FETAL PROGRAMMING
Barbara Alexander (Chair)

SEX STEROIDS AND VASCULAR FUNCTION
John Stallone (Chair)

DEADLINES: Advance Registration: June 11, 2007
CALL FOR NOMINATIONS

for the Editorship of the

American Journal of Physiology-Cell Physiology

Nominations are invited for the Editorship of the American Journal of Physiology-Cell Physiology to succeed D. Brown, who will complete his term as Editor on June 30, 2008. The Publications Committee plans to interview candidates in the Fall of 2007.

Applications should be received before August 15, 2007.

Nominations, accompanied by a curriculum vitae, should be sent to the Chair of the Publications Committee:

Kim E. Barrett, Ph.D.
APS
9650 Rockville Pike
Bethesda, MD 20814-3991

CALL FOR NOMINATIONS

for the Editorship of the

Journal of Neurophysiology

Nominations are invited for the Editorship of the Journal of Neurophysiology to succeed E. Marder, who will complete her term as Editor on June 30, 2008. The Publications Committee plans to interview candidates in the Fall of 2007.

Applications should be received before August 15, 2007.

Nominations, accompanied by a curriculum vitae, should be sent to the Chair of the Publications Committee:

Kim E. Barrett, Ph.D.
APS
9650 Rockville Pike
Bethesda, MD 20814-3991
Recruiters: Don’t miss this important message!

TO: Recruiters wanting to promote open positions, fellowship opportunities, programs, or conference announcements.

TIME: Now

MESSAGE: The publications of the American Physiological Society (APS) are a perfect way to advertise to research investigators, clinicians, educators, and information specialists in all disciplines of physiology. And now the full issues of almost all the APS journals are made available online in a pdf format. So your ad gets additional exposure online for free. Also, frequency discounts are given for running ads across the APS journals.

NOTE: Quarter, half, and full page ad sizes are available. Issues close the first of the month preceding the issue month.

ACTION REQUESTED: Email your ad to adnet@faseb.org for a quote.

Contact FASEB AdNet at 301-634-7791 for more info. View full media kit at www.faseb.org/adnet.
Benefits for FASEB Society Scientists

The Federation of American Societies for Experimental Biology is an organization of multiple member societies representing tens of thousands of life scientists.

Working closely with member societies, FASEB staff provide strategic intelligence on policy developments, conduct policy research, and engage government and media relations.

HOW FASEB HELPS YOU

In addition to the benefits you receive from being a member in your own professional society, you also receive a variety of important benefits through your society’s membership in FASEB including:

- Access to FASEB’s Legislative Action Center
- FASEB’s Washington Update
- Subscription discounts for The FASEB Journal
- Members only online access to the FASEB Directory of Members
- CME at FASEB Summer Research Conferences and society meetings
- Career development resources
- Personal insurance programs
- Credit card and line of credit programs

To learn more about FASEB, visit www.faseb.org and go to “Information for Scientists” to download a brochure.

Call toll-free 800.43FASEB or email memberbenefits@faseb.org.
TRANSLATIONAL PHYSIOLOGY

MLCK210 gene knockout or kinase inhibition preserves lung function following endotoxin-induced lung injury in mice
J. L. Rossi, A. V. Velentza, D. M. Steinhorn, D. M. Watterson, and M. S. Wainwright

Enhanced airway reactivity and inflammation in A2A adenosine receptor-deficient allergic mice

Hypoxia-inducible factors HIF-1α and HIF-2α are decreased in an experimental model of severe respiratory distress syndrome in preterm lambs

Hepatocyte growth factor and other fibroblast secretions modulate the phenotype of human bronchial epithelial cells
M. M. Myerburg, J. D. Latoche, E. E. McKenna, L. P. Stabile, J. S. Siegfried, C. A. Feghali-Bostwick, and J. M. Pilewski

Asbestos-mediated CREB phosphorylation is regulated by protein kinase A and extracellular signal-regulated kinases 1/2
C. A. Barlow, T. F. Barrett, A. Shukla, B. T. Mossman, and K. M. Lounsbury

Dysregulation of pulmonary elastin synthesis and assembly in preterm lambs with chronic lung disease

TNF-α induced CD38 expression in human airway smooth muscle cells: role of MAP kinases and transcription factors NF-κB and AP-1
K. G. Tirumurugaan, J. A. Jude, B. N. Kang, R. A. Panettieri, T. F. Walseth, and M. S. Kannan

Muc5b and Muc5ac are the major oligomeric mucins in equine airway mucus
K. Rousseau, S. Kirkham, Sausa McKane, R. Newton, P. Clegg, and D. J. Thornton

Extracellular matrix proteins differentially regulate airway smooth muscle phenotype and function
B. G. J. Dekkers, D. Schaaftena, S. A. Nelenmans, J. Zaagsma, and H. Meurs

Raf-1 kinase mediates adenylyl cyclase sensitization by TNF-α in human airway smooth muscle cells
Y. Osawa, P. D. Yim, D. Xu, R. A. Panettieri, and C. W. Emala

(Continued)
Omega-3 polyunsaturated fatty acids improve host response in chronic *Pseudomonas aeruginosa* lung infection in mice

Basolateral Cl channels in primary airway epithelial cultures

H. Fischer, B. Illek, W. E. Finkbeiner, and J. H. Widdicombe

The effects of PM_{10} particles and oxidative stress on macrophages and lung epithelial cells: modulating effects of calcium-signaling antagonists

D. M. Brown, L. Hutchison, K. Donaldson, and V. Stone

Heparan sulfates mediate pressure-induced increase in lung endothelial hydraulic conductivity via nitric oxide/reactive oxygen species

R. O. Dull, I. Mechem, and S. McJames

Modulation of pulmonary vascular smooth muscle cell phenotype in hypoxia: role of cGMP-dependent protein kinase

W. Zhou, C. Dasgupta, S. Negash, and J. Usha Raj

Modulation of pulmonary endothelial endothelin B receptor expression and signaling: implications for experimental hepatopulmonary syndrome

L. Tang, B. Luo, R. P. Patel, Y. Ling, J. Zhang, and M. B. Fallon

Interaction of interleukin-6 and the BMP pathway in pulmonary smooth muscle

M. Hagen, K. Fagan, W. Steudel, M. Carr, K. Lane, D. M. Rodman, and J. West

Roles of accumulated endogenous nitric oxide synthase inhibitors, enhanced arginase activity, and attenuated nitric oxide synthase activity in endothelial cells for pulmonary hypertension in rats

A. Sasaki, S. Doi, S. Mizutani, and H. Azuma

Activation of HGF/c-Met pathway contributes to the reactive oxygen species generation and motility of small cell lung cancer cells

R. Jagadeeswaran, S. P. Bhagwat, S. B. Maggirwar, and R. Salgia

Pneumocystis stimulates MCP-1 production by alveolar epithelial cells through a JNK-dependent mechanism

J. Wang, F. Gigliotti, S. P. Bhagwat, and T. W. Wright

Developmental regulation of DUOX1 expression and function in human fetal lung epithelial cells

H. Fischer, L. K. Gonzales, V. Kolla, C. Schwarzer, F. Miot, B. Illek, and P. L. Ballard

Heat shock protein 90 modulates endothelial nitric oxide synthase activity and vascular reactivity in the newborn piglet pulmonary circulation

J. L. Aschner, S. L. Foster, M. Kaplowitz, Y. Zhang, H. Zeng, and C. D. Fike

Dysfunction of Golgi tethers, SNAREs, and SNAPs in monocrotaline-induced pulmonary hypertension

P. B. Sehgal, S. Mukhopadhyay, F. Xu, K. Patel, and M. Shah

Nox4 mediates TGF-B1-induced retinoblastoma protein phosphorylation, proliferation, and hypertrophy in human airway smooth muscle cells

A. Sturrock, T. P. Huecksteadt, K. Norman, K. Sanders, T. M. Murphy, P. Chitano, K. Wilson, J. R. Hoidal, and T. P. Kennedy

Molecular effects of loss of BMPR2 signaling in smooth muscle in a transgenic mouse model of PAH

Y. Tada, S. Majka, M. Carr, J. Harral, D. Crona, T. Kuriyama, and J. West

Dose-dependent recruitment of CD25^+ and CD26^+ T cells in a novel F344 rat model of asthma

Cigarette smoke extract-induced suppression of caspase-3-like activity impairs human neutrophil phagocytosis

(Continued)
The response to recruitment worsens with progression of lung injury and fibrin accumulation in a mouse model of acid aspiration

A role for CFTR in the elevation of glutathione levels in the lung by oral glutathione administration

C. Kariya, H. Leitner, E. Min, C. van Heeckeren, A. van Heeckeren, and B. J. Day L1590

Hydrogen peroxide-induced Ca\(^{2+}\) mobilization in pulmonary arterial smooth muscle cells

M.-J. Lin, X.-R. Yang, Y.-N. Cao, and J. S. K. Sham L1598

Information for Authors is freely available online at http://www.the-aps.org/publications/journals/pub_quick.htm and is printed in the June and December issues of the Journal.
The American Journal of Physiology-Lung Cellular and Molecular Physiology is your comprehensive resource for the most exciting new findings in respiratory physiology.

AJP-Lung Cellular and Molecular Physiology covers all areas of respiratory physiology, including:

- original theoretical and research papers dealing with molecular, cellular, and morphological aspects of normal and abnormal function of cells and components of the respiratory system
- specific coverage of gas exchange and metabolic control at a cellular level, regulatory and informational molecules, gene expression, macromolecules, cell-to-cell motility, secretory mechanisms, membrane function, and the response of the respiratory system and its components to the environment

Authors are required to submit papers online at www.apscentral.org.

For Further Information, Contact:
The American Physiological Society
9650 Rockville Pike, Bethesda, MD 20814-3991 (USA)
Tel: 301-634-7180, Fax: 301-634-7418
E-mail: subscriptions@the-aps.org, Web: www.the-aps.org

Special Features
- Sign-up for e-mail notification of advance tables of contents
- Fully searchable text, including PubMed
- Rich color and sharp resolution of figures
- Editor's Home Page: www.the-aps.org/publications/ajplung
- Articles in Press: Accepted research papers are now published online within a few days after their acceptance.
- Perpetual/Electronic Archiving: The LOCKSS system preserves the electronic content of all APS journals.

Special APS Member Benefits
- FREE Online Access to the CURRENT content and LEGACY content of APS's 14 Research Journals: Members of the American Physiological Society (APS) receive FREE online access to both the current content and legacy content (going back as far as 100 years for some journals) of these APS research journals. This free online access includes AJP-Lung Cellular and Molecular Physiology.
- FREE Color Figures: Regular and Student Members of APS who are first or last authors receive FREE scientifically necessary color figures in all APS journals.
Carbon Monoxide Uptake Monitor for testing lung impairment

Carbon Monoxide uptake can be used in lab animals to assess the impairment of lung functions caused by radiation, environmental pollutants, and toxic or irritable inhalants. It is well known that the carbon monoxide uptake decreases when the lung function decreases. Our new instrument non-invasively measures diffusive function of the lung epithelium, by measuring rate of carbon monoxide uptake and respiration rate (BPM).

Hypoxia Gas Mixer

The Gas Mixer, Pegas 4000, is designed to mix up to 4 separate gases and deliver them as a modified atmosphere. Each component is controlled by individual flow controllers; all calculations are performed internally so the user need only input basic commands. System runs in stand alone operation or by PC connection (software included).

VO2/VCO2 Metabolic System

The VO2/VCO2 metabolic system; Oxymax, measures Oxygen consumption and Carbon Dioxide production rates and calculates Respiration Exchange Ratios in animals. The Oxymax also serves as a platform on to which other sub systems are added. These sub systems are various in function, and can measure other parameters such as Food Intake, Drinking Volume, Animal Activity, Temperature and Heart Rate (via telemetry), and urine collection in up to 32 subjects. These systems are custom built to customer specifications and include software, installation, and on-site training.

Animal Exercisers

Modular Enclosed Treadmill for VO2 / VCO2

The Modular Enclosed Treadmill is specifically designed for measuring VO2/VCO2 during exercise.

Exer 3/6 Open Treadmill for Mice and Rats

The Exer 3/6 is a general purpose exercise treadmill for 3 rats or 6 mice.

Both the Modular Treadmill and the Exer 3/6 feature adjustable speed (6-100 m/M) and adjustable inclination (0-25°). Both have optional electric stimulus with adjustable intensity and repetition rate. Also available is the “Humane Stimulus” option which counts visits to the shocker and turns it off to prevent injury.

Columbus Instruments
950 N. Hague Ave.; Columbus, OH 43204 U.S.A.
Phone: (614) 276-0861 Fax: (614) 276-0529
Email: sales@colinst.com Web: www.colinst.com
IN NEXT ISSUE

PULMONARY HYPERTENSION

Perspectives on endothelial-to-mesenchymal transition: potential contribution to vascular remodeling in chronic pulmonary hypertension (Invited Review)
Enrique Arciniegas, Maria G. Frid, Ivor S. Douglas, and Kurt R. Stenmark

Molecular effects of loss of BMPR2 signaling in smooth muscle in a transgenic mouse model of PAH
Yuji Tada, Susan Majka, Michelle Carr, Julie Harral, Daniel Crona, Takayuki Kuriyama, and James West

ACUTE LUNG INJURY

Interpreting the lung microvascular filtration coefficient (Editorial Focus)
Jahar Bhattacharya

Phosphoinositide 3-kinase, Src, and Akt modulate acute ventilation-induced vascular permeability increases in mouse lungs
Takashige Miyahara, Kazutoshi Hamanaka, David S. Weber, Douglas A. Drake, Mircea Anghelescu, and James C. Parker

Physiological and biochemical markers of alveolar epithelial barrier dysfunction in perfused human lungs (Translational Physiology)
James A. Frank, Raphael Briot, Jae Woo Lee, Akitoshi Ishizaka, Tokuiro Uchida, and Michael A. Matthay

Differential roles of p55 and p75 tumor necrosis factor receptors on stretch-induced pulmonary edema in mice (Translational Physiology)
Michael R. Wilson, Michael E. Goddard, Kieran P. O’Dea, Sharmila Choudhury, and Masao Takata

AIRWAY EPITHELIAL CELLS

CCSP regulates cross talk between secretory cells and both ciliated cells and macrophages of the conducting airway
Susan D. Reynolds, Paul R. Reynolds, Joshua C. Snyder, Fadra Whyte, Kevin J. Paavola, and Barry R. Stripp

LUNG DEVELOPMENT AND GROWTH

Developmental differences in the responses of IL-6 and IL-13 transgenic mice exposed to hyperoxia
Rayman Choo-Wing, Jonathan H. Nedrelow, Robert J. Homer, Jack A. Elias, and Vineet Bhandari

TGF-β-neutralizing antibodies improve pulmonary alveologenesis and vasculogenesis in the injured newborn lung
Hidehiko Nakanishi, Takahiro Sugiura, James B. Streisand, Scott M. Lonning, and Jesse D. Roberts, Jr