Chronic obstructive pulmonary disease and neutrophil infiltration: role of cigarette smoke and cyclooxygenase products

Mirella Profita,1 Angelo Sala,2 Anna Bonanno,1 Loredana Riccobono,1 Maria Ferraro,1 Stefania La Grutta,3 Giusy Daniela Albano,1 Angela Marina Montalbano,1 and Mark Gjomarkaj1

1Institute of Biomedicine and Molecular Immunology, Italian National Research Council, Palermo; 2Department of Pharmacological Sciences, University of Milan, Milan; and 3Environmental Health Unit, Agenzia Regionale per la Protezione dell’Ambiente, Palermo, Italy

Submitted 1 December 2008; accepted in final form 4 November 2009

Cigarette smoke is a major risk factor for a number of diseases, including cancer, cardiovascular diseases, and COPD. Cigarette smoke can cause the formation and release of different inflammatory factors such as IL-8 (16), and it can increase the expression of the adhesion molecules MAC-1 and LFA-1 on peripheral blood neutrophils (10), suggesting a potential causative link between smoking, neutrophil recruitment, and adhesion within the airways of COPD subjects.

Among the mediators involved in the development of airway diseases, an important role is played by arachidonic acid (AA) metabolites such as cyclooxygenase (COX) and lipoxygenase metabolites (40). However, although the 5-lipoxygenase-derived leukotrienes are known to be involved through the interaction with their CysLT1 receptor in asthma and allergic rhinitis (3), little attention has been paid, so far, to the potential involvement of COX metabolites, namely PG, in airway diseases.

The synthesis of PGE2, the main inflammatory PG, takes place in several different cellular types within the airways, including epithelial cells, follicular dendritic cells, fibroblasts, and monocytes (36), but AM certainly represent a major source of PGE2 in COPD (36). Interestingly, increased PGE2 concentration in the exhaled breath condensate of patients with COPD (36). Interestingly, increased PGE2 concentration in the exhaled breath condensate of patients with COPD has also been reported (18).

In this study, we evaluated the concentrations of PGE2 in the induced sputum obtained from COPD (smokers and former smokers), healthy smoker, and control subjects. In light of the results obtained and, in particular, of the apparent correlation between PGE2 concentrations and neutrophil infiltration, we tested the role of PGE2 in the recruitment of neutrophil and the effect of cigarette smoke on COX-2 and E-prostanoid (EP) receptors expression.

MATERIALS AND METHODS

Patients. We recruited four groups of subjects: COPD smokers (n = 12) and former smokers (n = 24), asymptomatic smokers with normal lung function (n = 12), and healthy asymptomatic nonsmoking subjects with normal lung function (n = 15).

COPD subjects were defined and classified according to the criteria reported by Global Initiative for Chronic Obstructive Lung Disease (GOLD) guidelines (23) and were classified as stage ≥1. Patients with COPD and healthy smokers had a smoking history of 10 pack-year or more. COPD former smokers patients had quit smoking for at least 2 yr. Reversibility test to bronchodilator was performed to exclude an
CIGARETTE SMOKE, PGE₂, AND PGE₂ RECEPTORS IN COPD

ashmatic component, and the increase in forced expiratory volume in 1 s (FEV₁) after salbutamol was lower than 12% and 200 ml, compared with basal values, in all COPD subjects. All COPD subjects were under treatment with long-acting β-adrenergic agonists (salmeterol 50-μg bid).

All patients were characterized with respect to sex, age, smoking history, COPD symptoms, comorbidity, and current history of treatment. Exclusion criteria included the following: other systemic diseases; other lung diseases apart from COPD and lung tumors; upper respiratory tract infections; and treatment with glucocorticoids or anticholinergics within the 3 mo before the study. None of the subjects had received a prior or concomitant treatment with COX-2 inhibitors.

The local ethics committee approved the study, and participating subjects gave their informed consent.

Sputum induction and processing. Sputum induction and processing were performed according to the methods of Hargreave et al. (8) with minor modifications. Briefly, patients in a fasting condition were exposed to 20 min to an aerosol of 3% hypertonic saline solution early in the morning, and sputum was collected into previously weighted 50-ml sterile ampoules. The volume of the induced sputum was previously determined, and an equal volume of DTT (0.1% in saline; Sigma, St. Louis, MO) was added. After homogenization, sputum samples were centrifuged at 800 g for 10 min to separate the supernatants from the cell pellet. The supernatants were then aspirated and frozen at −20°C in separate aliquots for the subsequent biochemical analysis. The cells obtained from induced sputum were then cyt centrifuged (Cytospin 2, Shandon, Runcorn, United Kingdom) and stained with May-Grunwald-Giemsa. The slides were read blindly by 2 independent investigators who counted at least 400 cells per slide. The number of squamous cells was subtracted from the total cell count to get the corrected cell number. The cytopsins for immunocytochemistry were prepared on 3-aminopropyltriethoxysilane (APTEX)-coated slides by adding 100 μl of cell suspension (~5 × 10⁶ cells/ml) into Shandon II cytocentrifuge cups and centrifuging at 180 g for 5 min. The air-dry slides were fixed in paraformaldehyde-lysine-perio date (PLP) for 30 min and in 15% sucrose in Dulbecco’s PBS for 30 min. The slides were stored at −80°C until use for immunocytochemical staining.

Analysis of prostanoids in induced sputum supernatant. The aliquots from the supernatants recovered from induced sputum samples were thawed, and PGE₂ was extracted according to Powell (24). The recovery was evaluated by using standard PGE₂ (1 ng), which was added to separate aliquots of induced sputum samples prepared and extracted in parallel to the original samples. PGE₂ concentrations were evaluated using a commercially available radioimmunoassay (RIA; Amersham International, Little Chalfont, Buckinghamshire, United Kingdom). DTT was not retained during the solid phase extraction, as verified using its rapid colorimetric reaction with the Ellman reagent, and therefore its presence in the sputum samples did not affect the quantitation of PGE₂. Results are expressed as picograms per milliliter induced sputum supernatant.

Immunocytochemistry. After thawing, immunostaining of COX-2 on sputum cells was performed using a mouse monoclonal anti-COX-2 (IgG₁) antibody (Cayman Chemical, Ann Arbor, MI) as previously described (25). The cell identification was based on cell morphology under light microscopy (×400 final magnification), carefully referring to the cell type distribution in corresponding Diff-Quik-stained slides; red staining identified positive cells. Two independent observers counted a minimum of 600 cells, and the mean value of the 2 observations was used (r = 0.93). The results were expressed as percentage of positively staining cells over the total cell number.

Preparation of cigarette smoke extract. Cigarette smoke solution was prepared as described previously (33) with some modifications. Each commercial cigarette (Marlboro) was smoked for 5 min, and two cigarettes were used per 25 ml of PBS to generate a cigarette smoke extract (CSE)-PBS solution. The CSE solution was filtered through a 0.22-μm pore size to remove bacteria and large particles. The smoke solution was then adjusted to pH 7.4 and used within 30 min of preparation. This solution was considered to be 100% CSE and diluted to obtain the desired concentration in each experiment. The concentration of CSE was calculated spectrophotometrically measuring the optical density as previously described (12). The pattern of absorbance, among different batches, showed very little differences.

Stimulation of AM from bronchoalveolar lavage and neutrophils from peripheral blood. AM were collected from the airways of subjects with no pulmonary and systemic inflammatory diseases who underwent bronchoscopy and bronchoalveolar lavage (BAL) for suspected lung cancer and who finally resulted cancer free. Briefly, the BAL was carried out in one of the subsegmental bronchi of the middle lobe by injection of several aliquots of sterile saline (up to a total volume of 0.2 l) reaspirated by gentle syringe suction. Immediately after lavage, mucus was removed from the fluid by filtration through a gauze, then BAL fluid was centrifuged at 400 g for 10 min at 4°C, and cells were resuspended in RPMI. The BAL cytology was conducted on cytocentrifuged slides (Cytospin; Shandon) stained by May-Grunwald-Giemsa, and macrophages were separated by adhesion.

Peripheral blood polymorphonuclear leukocytes were prepared from healthy subjects with the use of dextran sedimentation and centrifugation over Ficoll cushions, as previously described (26). AM and neutrophils were treated with CSE (10%) for different time of incubation (from 0 to 24 h) and added with calcium ionophore A23187 (2.5 μM; Sigma), and PGE₂ production was evaluated as described above. Expression of COX-1 and COX-2 isoforms was performed by Western blot on cellular lysates as described below. Furthermore, the expression of EP₁, EP₂, EP₃, and EP₄ receptors was evaluated in neutrophils treated with the CSE (10%).

Western blot analysis. Total protein extracts from AM and neutrophils treated with CSE (10%) were resuspended in 2× Laemmli buffer and separated by SDS-PAGE on 4–12% gradient gels followed by electroblotting onto nitrocellulose membranes. The following antibodies were used: mouse monoclonal anti-human COX-1 and

Table 1. Patients’ characteristics

<table>
<thead>
<tr>
<th>Subject, n</th>
<th>Control Subjects</th>
<th>Healthy (S)</th>
<th>COPD (IS)</th>
<th>COPD (S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex, male/female</td>
<td>15</td>
<td>12</td>
<td>24</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Mean age, yr</td>
<td>62 (49–72)</td>
<td>59.4 (45–70)</td>
<td>65 (59–71)</td>
<td>70 (63–72)</td>
<td>69 (63–76)</td>
<td>65 (42–55)</td>
<td>0.0001</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>FEV₁, % predicted</td>
<td>100 (99–106)</td>
<td>97 (92–106)</td>
<td>64 (57–78)</td>
<td>60 (45–71)</td>
<td>0.0001</td>
<td>NS</td>
<td>&lt;0.0001</td>
<td>&lt;0.0001</td>
<td>&lt;0.0001</td>
<td>0.0001</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>FEV₁/FVC, %</td>
<td>98 (96–102)</td>
<td>94 (91–100)</td>
<td>71 (66–82)</td>
<td>69 (63–76)</td>
<td>NS</td>
<td>NS</td>
<td>&lt;0.001</td>
<td>&lt;0.001</td>
<td>&lt;0.001</td>
<td>&lt;0.001</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Pack years</td>
<td>0</td>
<td>54.3 (26.2–30)</td>
<td>0</td>
<td>65 (42–55)</td>
<td>0.0001</td>
<td>NS</td>
<td>0.0001</td>
<td>0.0001</td>
<td>NS</td>
<td>0.0001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results are expressed as medians (25th to 75th percentiles). Statistical analysis was performed by Mann-Whitney. NS, not significant; S, smoker; IS, former smoker; COPD, chronic obstructive pulmonary disease; FEV₁, forced expiratory volume in 1 s; FVC, forced vital capacity.
Table 2. Total and differential cell count from induced sputum samples

<table>
<thead>
<tr>
<th></th>
<th>Control Subjects</th>
<th>Healthy (S)</th>
<th>COPD (fS)</th>
<th>COPD (S)</th>
<th></th>
<th>Control Subjects</th>
<th>Healthy (S)</th>
<th>COPD (fS)</th>
<th>COPD (S)</th>
<th>Healthy (S)</th>
<th>COPD (S)</th>
<th>Healthy (S)</th>
<th>COPD (S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macrophages (10⁶)</td>
<td>120.6 (52–147.7)</td>
<td>233.3 (147–330)</td>
<td>59.9 (28.1–167)</td>
<td>66.5 (56–93.6)</td>
<td>&lt;0.01</td>
<td>NS</td>
<td>NS</td>
<td>&lt;0.004</td>
<td>&lt;0.003</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Neutrophils (10⁴)</td>
<td>26.5 (7.3–43)</td>
<td>106.4 (51–255)</td>
<td>159 (72–413)</td>
<td>491 (241–783)</td>
<td>&lt;0.02</td>
<td>&lt;0.001</td>
<td>0.0001</td>
<td>NS</td>
<td>&lt;0.02</td>
<td>0.055</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Lymphocytes (10⁴)</td>
<td>0 (0–1.8)</td>
<td>2.6 (0–5.5)</td>
<td>0.06 (0–4.6)</td>
<td>0 (0–2.7)</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Eosinophils (10⁴)</td>
<td>0 (0–0)</td>
<td>1.6 (0–4.61)</td>
<td>1.2 (0–12.2)</td>
<td>5.0 (0.1–10.9)</td>
<td>NS</td>
<td>&lt;0.02</td>
<td>&lt;0.02</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Epithelial cells (10⁴)</td>
<td>0 (0–3.0)</td>
<td>0 (0–2.4)</td>
<td>2.0 (0–7.0)</td>
<td>0 (0–4.0)</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Total cells (10⁶)</td>
<td>1.5 (0.6–2.2)</td>
<td>3.7 (2.4–5.6)</td>
<td>2.6 (1.1–6.9)</td>
<td>5.7 (3.1–8.6)</td>
<td>&lt;0.01</td>
<td>&lt;0.05</td>
<td>&lt;0.05</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

Results are expressed as medians (25th to 75th percentiles). Statistical analysis was performed by Mann-Whitney.

COX-2 antibodies (Cayman Chemical) and rabbit polyclonal anti-human EP₁, EP₂, EP₃, and EP₄ receptor antibodies (Cayman Chemical). Primary antisera were visualized with horseradish peroxidase-conjugated secondary antibody (Sigma) and developed with an enhanced chemiluminescence system (Amersham International). Approximate molecular masses were determined using calibrated prestained standards (Amersham International). Negative controls were performed in the absence of primary antibody or including an isotype control antibody. β-Actin (Sigma) was used to normalize the amount of protein included in the Western blot analysis.

Real-time quantitative RT-PCR of muscarinic EP₁, EP₂, EP₃, and EP₄ receptors. Total cellular RNA was extracted from cells according to the method of Chomczynski and Sacchi using the RNAzol kit (Biotec Italia, Rome, Italy). Total RNA (4 μg) was reverse-transcribed into cDNA using Moloney murine leukemia virus (MMLV)-RT and oligo(dT)₁₂–₁₈ primers (Invitrogen) in a 25-μl reaction mixture. Real-time quantitative PCR of EP₁, EP₂, EP₃, and EP₄ receptor subtypes of human PGE₂ receptors was carried out using the ABI PRISM 7900HT Sequence Detection System (Applied Biosystems) using specific FAM-labeled probes and primers (TaqMan Assays on Demand; Applied Biosystems). GAPDH gene expression was used as endogenous control. Gene expression levels were expressed as threshold cycle endpoints (30).

Adhesion assay. Purified peripheral blood neutrophils were resuspended in PBS (10⁶ cells/ml), labeled for 45 min at 37°C with 50 μg/ml fluorochrome-dye SFDA (Molecular Probes), washed, and resuspended in PBS (0.4 × 10⁶ cells/ml). Neutrophil adhesion was performed according to Zeidler et al. (44) with minor modifications. The simian virus 40 (SV40) large T antigen-transformed human airway epithelial cell line (16HBE) was used for adhesion assay of neutrophils. 16HBE cell line was cultured as adherent monolayers in MEM supplemented with 10% heat-inactivated (56°C, 30 min) fetal calf serum + 100 U/ml penicillin and 100 mg/ml streptomycin. 16HBE cells have previously been used to study the functional properties of bronchial epithelial cells in inflammation (15). Immediately before addition of neutrophils, medium was removed from 16HBE cultures (70,000 cells/well) grown to confluence in standard 24-well culture plates, and cells were washed with warm PBS. Labeled neutrophils (0.2 × 10⁶ cells/well) were added in a final volume of 0.5 ml. The plates were incubated at 37°C for 25 min, and total fluorescence was evaluated using an excitation wavelength of 485 nm and monitoring emission at 530 nm in a Wallac 1420 Victor multilabel counter (PerkinElmer). Subsequently, nonadherent cells were removed by washing, and fluorescence was measured to evaluate bound cells. Adhesion was expressed as percentage of the fluorescence ratio of bound cells to total cells. All test points were performed in triplicate.

Effect of induced sputum supernatant and PGE₂ on neutrophil adhesion. The induced sputum supernatants (1 ml) were added to neutrophils for 18 h. At the end of the incubation time, the neutrophils were centrifuged at 1,000 rpm for 10 min, and adhesion was assessed as described above. To determine the contribution of PGE₂ present in induced sputum supernatants to the observed effect on neutrophil adhesion, selected samples (6 COPD smokers and 6 COPD former smokers) were incubated in the presence or absence of PGE₂ affinity.
Fisher test correction or results of in vitro experiments were analyzed using ANOVA. The results are expressed as means and SD or SE of statistical significant. The results obtained from recovery experiments were analyzed using the nonparametric Mann-Whitney U test for comparison between groups. The Spearman rank test was used for correlation between data. A value of \( P < 0.05 \) was accepted as statistically significant. The results obtained from recovery experiments are expressed as means and SD or SE of \( n \) replication. The results of in vitro experiments were analyzed using ANOVA with Fisher test correction or \( t \)-test.

**RESULTS**

**Patients and differential cell counts.** As expected, pulmonary functions significantly decreased in COPD subjects (smokers or former smokers) compared with either control subjects or healthy smokers (Table 1).

In line with published data, the results of the differential cell counts performed on induced sputum samples showed a statistically significant increase in the number of cells both in healthy smokers and COPD subjects (either smokers or former smokers). In healthy smokers, this increase reflected an increase in the number of both macrophages and neutrophils, whereas in COPD subjects neutrophils showed a large increase (in particular in actual smokers) with the number of macrophages being significantly lower than healthy smokers and similar to normal controls (Table 2). In agreement with previous reports, eosinophils also resulted significantly higher in COPD subjects compared with controls (28), whereas lymphocytes did not show significant changes (11, 20, 28), possibly reflecting the relatively different sampling of the airways (bronchial vs. alveolar) obtained with the induced sputum compared with BAL.

**PGE\(_2\) and COX-2 expression in induced sputum samples.** The recovery of PGE\(_2\), as assessed in induced sputum samples analyzed with and without the addition of 1 ng of synthetic PGE\(_2\), was 89 ± 10%. PGE\(_2\) concentrations in supernatants of induced sputum samples obtained from COPD smokers were significantly higher than those observed in COPD former smokers.
smokers, healthy smokers, and control subjects \((P < 0.0001, P = 0.0005, \text{ and } P = 0.0011, \text{ respectively})\); interestingly, healthy smokers also showed values higher than control subjects (Fig. 1A).

The percentage of total COX-2-positive cells recovered from induced sputum samples increased in COPD smokers compared with COPD former smokers, healthy smokers, and control subjects \((P < 0.0004, P < 0.0005, \text{ and } P = 0.0002, \text{ respectively}; \text{ Fig. 1B})\); again, healthy smokers and COPD former smokers showed a higher number of COX-2-staining cells compared with controls. Macrophages and neutrophils represented the main cell types expressing COX-2 in all groups of subjects (Table 3).

In COPD nonsmokers, the correlation between PGE2 and neutrophils has a \(r\) of 0.42 and is statistically significant \((P < 0.05)\), whereas the same correlation in COPD smokers (with a much smaller \(n\)) is not. Aggregating the data relative to all COPD subjects, we still observed a significant correlation between PGE2 concentrations and the number of neutrophils \((r = 0.5; P < 0.004)\) in induced sputum samples (Fig. 2). We also carried out the analysis of the correlation between PGE2 and neutrophils in the healthy smokers group or between PGE2 and macrophages in the healthy smokers or COPD subjects and did not find any statistically significant correlation \((P > 0.1)\).

**Effect of induced sputum supernatant and PGE2 on neutrophil adhesion.** Based on the direct correlation between PGE2 concentrations and the percentage of neutrophils in induced sputum, we evaluated the effect of supernatants of induced sputum samples obtained from COPD subjects on the adhesion of peripheral blood neutrophils to human airway epithelial cells (16HBE). Samples from six COPD smokers showing the highest concentrations of PGE2 \((>2 \text{ ng/ml, 0.6 nM})\) and six COPD former smokers with lowest concentrations of PGE2 \(<1 \text{ ng/ml})\) were used. The results obtained showed a significantly higher number of adhering neutrophils on incubation with induced sputum supernatants from COPD smoker subjects compared with samples obtained from COPD former smoker subjects \((P < 0.001)\). Selective immunoprecipitation of PGE2 from the same samples significantly reduced neutrophil adhesion induced by supernatants from COPD smokers but was basically ineffective on the activity of supernatants from COPD former smokers (Fig. 3), suggesting that PGE2 contributes to the increased adhesivity of neutrophils incubated with supernatants from induced sputum from active smoker COPD subjects.

**Stimulation of AM from BAL and neutrophils from peripheral blood.** AM and neutrophils from normal subjects when pretreated with CSE \((10\%)\) significantly increased COX-2 expression and activity (as assessed by the production of PGE2 after activation with the calcium ionophore A23187). In particular, AM increased COX activity (Fig. 4A) and COX-2 expression (Fig. 4C and E) after stimulation of AM for 24 h, and neutrophils increased their COX activity (Fig. 4B) and COX-2 expression (Fig. 4D and F), reaching a maximum after 3 h of incubation with CSE, whereas at 24 h it did not find any statistically significant correlation \((P > 0.01)\).
was possible to observe a decrease in COX activity. Similarly, pretreatment with CSE markedly increased the expression of EP2 and EP4 receptors in neutrophils, an effect that was maximal at 3 h for EP2 receptors (Fig. 5, A and C) but still remained quite significant at 24 h for both receptors (Fig. 5, B and C). EP1 and EP3 receptor expression was not affected by treatment with CSE (Fig. 5, A–C). These results were confirmed by quantitative RT-PCR analysis that showed increased amounts of EP2 and EP4 mRNA (as indicated by the lower number of amplification cycles required) after treatment with CSE, whereas EP1 and EP3 did not change in response to CSE (Fig. 6).

**Effect of PGE2 on neutrophil adhesion.** To confirm the potential involvement of PGE2 in the enhanced adhesivity of neutrophils observed in induced sputum samples, we tested the effect of PGE2 on the adhesivity of CSE-treated, purified peripheral blood neutrophils, showing a significant enhancement at 1 and 10 nM but not at 100 nM (Fig. 7A). The EP2 receptor agonist Butaprost also significantly enhanced the adhesivity of neutrophils to human airway epithelial cells, whereas the effect of PGE2 was significantly blunted by the preincubation of neutrophils with the EP4-selective antagonist AH-23848 (30 μM) (Fig. 7B). Pretreatment with a potent and selective TP receptor antagonist (GR-32191B, 100 nM) did not affect the enhanced adhesion induced by PGE2 (Fig. 7B). Neither AH-23848 nor GR-32191B affected the adhesion of neutrophils observed in the absence of PGE2 activation (Fig. 7B).
PGE2 in breath condensate may not be the result of COX-2 treatment with COX-2-selective inhibitors (19), suggesting that concentrations compared with controls (18) and resistance to densate from exsmoker COPD subjects showing increased including lipid mediators such as leukotriene B4 and chemokines such as IL-8, and it is quite reasonable that the system may present significant redundancies, as cigarette smoke itself is able to increase neutrophil adhesion (32).

PGE2 has been previously measured in exhaled breath condensate from exsmoker COPD subjects showing increased concentrations compared with controls (18) and resistance to treatment with COX-2-selective inhibitors (19), suggesting that PGE2 in breath condensate may not be the result of COX-2 activity. Nevertheless, as the subjects participating in that study were all former smokers, this appears to be consistent with our data. The results of a very recent study carried out using induced sputum samples supported the role of COX-2-derived PGE2 in airway inflammation, suggesting it may contribute to the severity of airflow limitation mediated by matrix metalloproteinase-2 (MMP-2) during progression of COPD (4). Interestingly, increased concentrations of the urinary metabolite of PGE2 have been reported in smokers and former smokers compared with never-smoker subjects; in these subjects, treatment with celecoxib, a selective COX-2 inhibitor, caused a 50% decrease in the excretion of urinary PGE2 metabolites, providing evidence for a critical involvement of COX-2 in the increased formation of PGE2 in smokers (6).

Cigarette smoke represents the most important risk factor in the development of COPD given the compelling evidence that smoke represents a significant source of oxidant species (5), oxidative stress (17), and that the unbalance of oxidant and antioxidant within the lung has been long linked to COPD (27). Nevertheless, cigarette smoke is also known to induce the expression of COX-2, as well as downstream isomerases, in several cell types present within the airways (13, 39), and indeed in our experimental conditions CSE was able to induce COX activity, evaluated as maximal PGE2 biosynthesis and COX-2 protein expression in both AM obtained from BAL of control subjects and peripheral blood neutrophils. This is well in agreement with the enhanced expression of COX-2 in induced sputum cells as well as with the concentrations of PGE2 that we observed in induced sputum supernatants obtained from COPD former smokers (6).

It is known that the activity of PGE2 is mediated by four subtypes of EP receptors (EP1-4; Ref. 22). Interestingly, CSE also significantly increased the expression of EP2 and EP4 receptors in purified human neutrophils, although leaving EP1 and EP3 receptors unaffected, as evaluated both by Western blot analysis and quantitative RT-PCR. Although the role of

Fig. 7. Effect of PGE2 on neutrophil adhesion on pretreatment with CSE. Purified peripheral blood neutrophils were treated for 24 h with CSE (10%) and then stimulated on human airway epithelial cells (16HBE) with different concentrations of PGE2 (A), the EP2-selective agonist Butaprost (100 nM), the selective EP4 antagonist AH-23848 (30 μM), the potent and selective Txα2-PGH2 (TP) receptor antagonist GR-32191B (100 nM), and PGE2 (10 nM) in the presence or absence of AH-23848 or GR-32191B (8). Adhesion was assessed by fluorescence measurements using a Wallac 1420 Victor multilabel counter (PerkinElmer) as described in MATERIALS AND METHODS. Results are expressed as means ± SD of percentage of fluorescence. *P < 0.05 vs. Control; #P < 0.05 vs. 10 nM PGE2.
each receptor has not been clearly established, an altered expression of EP$_2$ and EP$_4$ receptors was observed in cells from patients with asthma, supporting the hypothesis that these receptors may be involved in chronic airway inflammation. The activation of EP$_2$ and EP$_4$ receptors has mostly been described as leading to a decreased adhesion/chemotaxis of neutrophils, but several differences can be noted between previous publications and the conditions used in the present study, namely: 1) higher PGE$_2$ concentrations ($\geq$100 nM) and/or the concomitant use of phosphodiesterase inhibitors were commonly used; 2) in most cases, the studied effect was the inhibition of FMLP-induced neutrophil adhesion on pretreatment with PGE$_2$; and 3) no pretreatment with CSE was present. It is interesting to note that the common use of phosphodiesterase inhibitors seems to link the inhibitory effect on neutrophils to increased cAMP concentrations, whereas the effects observed in the present study may involve alternative signal transduction mechanisms. In our work, we could verify that low nanomolar (1–10 but not 100 nM) concentrations of PGE$_2$ were able to significantly enhance the adhesion of CSE-treated neutrophils to airway epithelial cells, an effect that was mimicked by the EP$_2$-selective agonist Butaprost and blunted by the EP$_3$-selective antagonist AH-23848, suggesting that both subtypes could play a role in the observed effect of PGE$_2$. The potential activity of PGE$_2$ onto the TP receptor was ruled out through the use of a specific antagonist. Previous works reported about the activation of neutrophil by PGE$_2$ (34) or neutrophil-like HL-60 possibly through a cAMP-independent mechanism (42), suggesting that the complex activities of PGE$_2$ within the context of the inflammatory reaction need additional investigation, in particular with respect to the airways. Indeed, evidence of possible anti-inflammatory activities of PGE$_2$ in the lung have been made available throughout the years, and the bronchoconstriction observed on treatment with COX inhibitors in aspirin-sensitive asthmatics is clearly accompanied by 10.220.33.5 on October 29, 2017 by 10.220.33.5 on October 29, 2017.
Mroz RM, Chyczewska E, Korniluk M, Stasiak-Barmuta A, Ossolina-

ka M. Comparison of cellular composition of induced sputum, bronchial
washings and bronchoalveolar lavage fluid in sarcoidosis, hypersensitivity

Mroz RM, Holownia A, Chyczewska E, Drosto EM, Braszko JJ, 
Noparlik J, Donaldson K, Macnee W. Cytoplasm-nuclear trafficking of
CREB and CREB phosphorylation at Ser133 during therapy of chronic

Narumiya S, Sugimoto Y, Ushikubi F. Prostanoid receptors: structures,

Pauwels RA, Buist AS, Calverley PM, Jenkins CR, Hurd SS. Global
strategy for the diagnosis, management, and prevention of chronic ob-
structive pulmonary disease. NHLBI/WHO Global Initiative for Chronic
Obstructive Lung Disease (GOLD) Workshop summary. *Am J Respir Crit

Powell WS. Rapid extraction of oxygenated metabolites of arachidonic
acid from biological samples using octadecylsilyl silica. *Prostaglandins*

Profta M, Sala A, Bonanno A, Riccobono L, Siena L, Melis MR, Di
Giorgi R, Mirabella F, Gjomarkaj M, Bonsignore G, Vignola AM.
Increased prostaglandin E2 concentrations and cyclooxygenase-2 expres-
sion in asthmatic subjects with sputum eosinophilia. *J Allergy Clin

Pauwels RA, Buist AS, Calverley PM, Jenkins CR, Hurd SS. Global
strategy for the diagnosis, management, and prevention of chronic ob-
structive pulmonary disease. NHLBI/WHO Global Initiative for Chronic
Obstructive Lung Disease (GOLD) Workshop summary. *Am J Respir Crit

Powell WS. Rapid extraction of oxygenated metabolites of arachidonic
acid from biological samples using octadecylsilyl silica. *Prostaglandins*

Profta M, Sala A, Bonanno A, Riccobono L, Siena L, Melis MR, Di
Giorgi R, Mirabella F, Gjomarkaj M, Bonsignore G, Vignola AM.
Increased prostaglandin E2 concentrations and cyclooxygenase-2 expres-
sion in asthmatic subjects with sputum eosinophilia. *J Allergy Clin

Profta M, Sala A, Bonanno A, Riccobono L, Siena L, Melis MR, Di
Giorgi R, Mirabella F, Gjomarkaj M, Bonsignore G, Vignola AM.
Increased prostaglandin E2 concentrations and cyclooxygenase-2 expres-
sion in asthmatic subjects with sputum eosinophilia. *J Allergy Clin

Profta M, Sala A, Bonanno A, Riccobono L, Siena L, Melis MR, Di
Giorgi R, Mirabella F, Gjomarkaj M, Bonsignore G, Vignola AM.
Increased prostaglandin E2 concentrations and cyclooxygenase-2 expres-
sion in asthmatic subjects with sputum eosinophilia. *J Allergy Clin

Profta M, Sala A, Bonanno A, Riccobono L, Siena L, Melis MR, Di
Giorgi R, Mirabella F, Gjomarkaj M, Bonsignore G, Vignola AM.
Increased prostaglandin E2 concentrations and cyclooxygenase-2 expres-
sion in asthmatic subjects with sputum eosinophilia. *J Allergy Clin

Profta M, Sala A, Bonanno A, Riccobono L, Siena L, Melis MR, Di
Giorgi R, Mirabella F, Gjomarkaj M, Bonsignore G, Vignola AM.
Increased prostaglandin E2 concentrations and cyclooxygenase-2 expres-
sion in asthmatic subjects with sputum eosinophilia. *J Allergy Clin

Profta M, Sala A, Bonanno A, Riccobono L, Siena L, Melis MR, Di
Giorgi R, Mirabella F, Gjomarkaj M, Bonsignore G, Vignola AM.
Increased prostaglandin E2 concentrations and cyclooxygenase-2 expres-
sion in asthmatic subjects with sputum eosinophilia. *J Allergy Clin

Profta M, Sala A, Bonanno A, Riccobono L, Siena L, Melis MR, Di
Giorgi R, Mirabella F, Gjomarkaj M, Bonsignore G, Vignola AM.
Increased prostaglandin E2 concentrations and cyclooxygenase-2 expres-
sion in asthmatic subjects with sputum eosinophilia. *J Allergy Clin

Profta M, Sala A, Bonanno A, Riccobono L, Siena L, Melis MR, Di
Giorgi R, Mirabella F, Gjomarkaj M, Bonsignore G, Vignola AM.
Increased prostaglandin E2 concentrations and cyclooxygenase-2 expres-
sion in asthmatic subjects with sputum eosinophilia. *J Allergy Clin

Profta M, Sala A, Bonanno A, Riccobono L, Siena L, Melis MR, Di
Giorgi R, Mirabella F, Gjomarkaj M, Bonsignore G, Vignola AM.
Increased prostaglandin E2 concentrations and cyclooxygenase-2 expres-
sion in asthmatic subjects with sputum eosinophilia. *J Allergy Clin

Profta M, Sala A, Bonanno A, Riccobono L, Siena L, Melis MR, Di
Giorgi R, Mirabella F, Gjomarkaj M, Bonsignore G, Vignola AM.
Increased prostaglandin E2 concentrations and cyclooxygenase-2 expres-
sion in asthmatic subjects with sputum eosinophilia. *J Allergy Clin

Profta M, Sala A, Bonanno A, Riccobono L, Siena L, Melis MR, Di
Giorgi R, Mirabella F, Gjomarkaj M, Bonsignore G, Vignola AM.
Increased prostaglandin E2 concentrations and cyclooxygenase-2 expres-
sion in asthmatic subjects with sputum eosinophilia. *J Allergy Clin

Profta M, Sala A, Bonanno A, Riccobono L, Siena L, Melis MR, Di
Giorgi R, Mirabella F, Gjomarkaj M, Bonsignore G, Vignola AM.
Increased prostaglandin E2 concentrations and cyclooxygenase-2 expres-
sion in asthmatic subjects with sputum eosinophilia. *J Allergy Clin

Profta M, Sala A, Bonanno A, Riccobono L, Siena L, Melis MR, Di
Giorgi R, Mirabella F, Gjomarkaj M, Bonsignore G, Vignola AM.
Increased prostaglandin E2 concentrations and cyclooxygenase-2 expres-
sion in asthmatic subjects with sputum eosinophilia. *J Allergy Clin