STAT6 regulates natural helper cell proliferation during lung inflammation initiated by *Alternaria*

Taylor A. Doherty,1,2* Naseem Khorram,1* Jinny E. Chang,1,3 Hee-Kyoo Kim,1,4 Peter Rosenthal,1 Michael Croft,2 and David H. Broide1

1Department of Medicine, University of California, San Diego, California; 2Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, California; 3Division of Allergy, Asthma and Immunology, Scripps Clinic, La Jolla, California; and 4Department of Internal Medicine, Kosin University College of Medicine, Busan, Korea

Submitted 24 May 2012; accepted in final form 31 July 2012

STAT6 regulates natural helper cell proliferation during lung inflammation initiated by *Alternaria*

Doherty TA, Khorram N, Chang JE, Kim H, Rosenthal P, Croft M, Broide DH. STAT6 regulates natural helper cell proliferation during lung inflammation initiated by *Alternaria*. Am J Physiol Lung Cell Mol Physiol 303: L577–L588, 2012. First published August 3, 2012; doi:10.1152/ajplung.00174.2012.—Asthma exacerbations can induce an innate eosinophilia in the airway compared with other allergens that is dependent on STAT6 (7). The finding that different Aeroallergens may induce unique innate responses is supported by a report that the house dust mite (HDM) *Dermatophagoides pteronyssinus* contains an accessory protein homolog of MD-2 that can specifically activate TOLL-like receptor type 4 signaling (39). Aside from this, mechanisms whereby individual allergens can specifically activate the innate immune system are largely unknown.

Our current studies reveal that *Alternaria* specifically induces activation of natural helper cells (NHCs), an innate lymphoid population. Innate lymphoid cell types have recently been discovered and do not express known lineage markers (lineage-negative), including CD3, CD4, CD8, T cell receptor (TCR)-β, TCRα, CD5, CD19, B220, NK1.1, Ter119, Gr-1, CD11c, and FcεR1 (26, 27, 33). This combination of surface markers excludes B, T, natural killer (NK), and NK T (NKT) cells, as well as mast cells, basophils, granulocytes, dendritic cells, and macrophages. Moro et al. (26) were the first to identify a novel population of small round cells with a single nucleus and scant cytoplasm they termed “natural helper cells” (NHCs) that have the innate ability to express high levels of T helper (Th) type 2 (Th2) cytokines after exposure to the proinflammatory cytokine IL-33 (26). Studies of lineage-negative lymphocytes have demonstrated their presence in mice in the gastrointestinal tract, mesenteric fat and lymph nodes, spleen, liver, bone marrow, and lung (3, 5, 24, 26, 27, 33, 44), while studies in humans have identified their presence in the gastrointestinal tract, lung, bronchoalveolar lavage (BAL), and nasal polyps (23, 24). There are a limited number of studies examining the role of lineage-negative lymphocytes in models of disease. In studies of influenza viral infection in mice associated with type 1 interferon and Th1 immune responses, a population of cells in the mouse lung that closely resemble NHCs that contribute to airway hyperreactivity, as well as tissue remodeling/repair, has been described (5, 24). Very recently, it was reported that lung NHCs contribute to papain- and *Alternaria*-induced airway inflammation and highlight the role of IL-33 in promoting Th2 cytokine production (2, 12, 15). These studies have largely focused on innate lymphoid cell cytokine responses or contribution to airway hyperreactivity (1, 16), but mechanisms that regulate the accumulation and proliferation of lung NHCs after allergen challenge are largely unknown.

Asthma exacerbations are a major cause of morbidity for patients with severe asthma. Sensitization and exposure to the fungal allergen *Alternaria alternata* is a risk factor for severity of asthma symptoms, including episodes of fatal/near-fatal attacks (4, 9, 22, 28, 32, 34). The spores of *Alternaria* are known to be a source of outdoor allergens for sensitized individuals but have also recently been detected at high levels indoors (36). Dispersion of the spores during periods of warm dry weather has been associated with epidemic, severe asthma symptoms (4, 9, 22, 28, 32, 34). The unique associations with *Alternaria* and severe asthma exacerbations are intriguing, but the mechanisms responsible for the unique pathogenesis of *Alternaria* are not well understood.

Our previous studies demonstrated that *Alternaria* can induce an innate eosinophilia in the airway compared with other allergens that is dependent on STAT6 (7). The finding that different Aeroallergens may induce unique innate responses is supported by a report that the house dust mite (HDM) *Dermatophagoides pteronyssinus* contains an accessory protein homolog of MD-2 that can specifically activate TOLL-like receptor type 4 signaling (39). Aside from this, mechanisms whereby individual allergens can specifically activate the innate immune system are largely unknown.

Our current studies reveal that *Alternaria* specifically induces activation of natural helper cells (NHCs), an innate lymphoid population. Innate lymphoid cell types have recently been discovered and do not express known lineage markers (lineage-negative), including CD3, CD4, CD8, T cell receptor (TCR)-β, TCRα, CD5, CD19, B220, NK1.1, Ter119, Gr-1, CD11c, and FcεR1 (26, 27, 33). This combination of surface markers excludes B, T, natural killer (NK), and NK T (NKT) cells, as well as mast cells, basophils, granulocytes, dendritic cells, and macrophages. Moro et al. (26) were the first to identify a novel population of small round cells with a single nucleus and scant cytoplasm they termed “natural helper cells” (NHCs) that have the innate ability to express high levels of T helper (Th) type 2 (Th2) cytokines after exposure to the proinflammatory cytokine IL-33 (26). Studies of lineage-negative lymphocytes have demonstrated their presence in mice in the gastrointestinal tract, mesenteric fat and lymph nodes, spleen, liver, bone marrow, and lung (3, 5, 24, 26, 27, 33, 44), while studies in humans have identified their presence in the gastrointestinal tract, lung, bronchoalveolar lavage (BAL), and nasal polyps (23, 24). There are a limited number of studies examining the role of lineage-negative lymphocytes in models of disease. In studies of influenza viral infection in mice associated with type 1 interferon and Th1 immune responses, a population of cells in the mouse lung that closely resemble NHCs that contribute to airway hyperreactivity, as well as tissue remodeling/repair, has been described (5, 24). Very recently, it was reported that lung NHCs contribute to papain- and *Alternaria*-induced airway inflammation and highlight the role of IL-33 in promoting Th2 cytokine production (2, 12, 15). These studies have largely focused on innate lymphoid cell cytokine responses or contribution to airway hyperreactivity (1, 16), but mechanisms that regulate the accumulation and proliferation of lung NHCs after allergen challenge are largely unknown.

* T. A. Doherty and N. Khorram contributed equally to this work.

Address for reprint requests and other correspondence: T. Doherty, Dept. of Medicine, Univ. of California San Diego, Biomedical Sciences Bldg., Rm. 5080, 9500 Gilman Dr., La Jolla, CA 92093-0635 (e-mail: t.doherty@ucsd.edu).

http://www.ajplung.org

1040-0605/12 Copyright © 2012 the American Physiological Society

L577
In this study, we have examined whether *Alternaria*, an aeroallergen specifically associated with severe asthma, induces a unique innate immune response compared with other allergens. We were surprised to find that *Alternaria alternata*, but not *Aspergillus fumigatus*, the HDM *D. pteronyssinus*, or *Candida albicans*, induced a rapid increase in airway levels of IL-33, accompanied by IL-33 receptor (IL-33R)-positive lung NHC production of IL-5, IL-13, and the pro-remodeling/repair growth factor amphiregulin. NHCs in the lung and bone marrow of mice, as well as similar cells in allergic humans, constitutively expressed transcription factors [GATA-3 and E2F transcription-specific sequence-1 (ETS-1)] that could allow for rapid induction of Th2 cytokines. Surprisingly, NHC numbers and proliferation were reduced in lungs of STAT6-deficient (STAT6−/−) mice after a single challenge with *Alternaria*, despite strong GATA-3 expression. *Alternaria* did not induce eosinophilia in mice deficient in NHCs (IL-7 (IL-7R) receptor-deficient (IL-7R−/−) mice), and blocking the IL-33 receptor additionally inhibited the innate eosinophil response. Thus the ability of *Alternaria* to rapidly activate lung NHCs that express ETS-1 and GATA-3 and proliferate in a STAT6-dependent manner may contribute to *Alternaria*-associated severe asthma.

MATERIALS AND METHODS

Mice. Six- to 8-wk-old male and female C57BL/6, recombination-activating gene (RAG) type 2-deficient (RAG2−/−), IL-7R−/−, and STAT6−/− mice were obtained from Jackson Laboratories and bred in-house. The mice were challenged with a single intranasal dose (25 or 100 μg) of *A. alternata* extract (lot nos. 136056 and 177372; LPS = 0.11–0.12 ng) or PBS and euthanized 3 h, 6 h, 12 h, or 3 days later. In some experiments, mice received a single intranasal challenge of 100 μg of *D. pteronyssinus* HDM extract (lot no. 165197; LPS = 0.19 ng), *A. fumigatus* (lot no. 118033, LPS = 0.04 ng), or *C. albicans* (lot no. 111797 LPS = 0.006 ng) and euthanized 12 h later. All extracts were obtained from Greer Laboratories, and LPS was measured by *Limulus* assay (Lanza) and reported as nanograms per 100 μg with a conversion factor of 10 endotoxin units per nanogram. In selected experiments, mice received 25 μg of *Alternaria* extract on days 0, 3, 6, and 9 and euthanized 24 h later. For in vivo T1/ST2 blocking studies, wild-type (WT) B6 mice received intraperitoneal injections of 0.1 mg/ml of anti-T1/ST2 (clone DJ8, rat IgG1, MD Biosciences) or rat IgG (Millipore) daily for 2 days followed by intranasal *Alternaria* challenge 12 h before euthanization. All studies were approved by the University of California San Diego Institutional Animal Care and Use Committee.

Airway cellular analysis and lung, blood, and bone marrow processing. BAL fluid was obtained by intratracheal insertion of a catheter and five lavages with 0.7 ml of PBS containing 2% filtered BSA (Sigma). Cardiac puncture was performed to obtain blood. Lungs were placed in RPMI medium and digested into single-cell suspensions after incubation with 10 mg/ml collagenase D and 1 mg/ml DNase (Roche), as previously described (8). Isolation of bone marrow cells was accomplished by flushing tibias and fibulas with PBS. Live total BAL, lung, and bone marrow cells were counted using a flow cytometer (Accuri C6 cytometer (BD Biosciences), and sample data were further analyzed with FlowJo software (Tree Star). Purified NHC were obtained using a FACS Aria cell sorter (BD Biosciences).

ELISA for BAL cytokines and serum IgE. ELISA of BAL supernatant for IL-4, IL-5, IL-9, IL-13, IL-25, IL-33, CCL11, CCL24, IFN-γ, and amphiregulin and serum for total IgE (BD Biosciences) was performed according to the manufacturer’s instructions and read with a microplate reader (model 680, Bio-Rad). All ELISA kits used for BAL studies were obtained from R & D Systems, except the kit for IL-9, which was obtained from Biomedica.

Human peripheral blood innate lymphoid cell studies. Humans with allergic rhinitis were diagnosed on the basis of perennial or seasonal rhinitis symptoms, along with positive allergen immediate hypersensitivity skin prick testing for at least one common indoor or outdoor allergen (dust mite, cat dander, or grass pollen). The subjects did not have asthma. Peripheral blood was obtained via venipuncture in a Vacutainer tube (BD Biosciences) and centrifuged at 23°C for 30 min at 1,400 rpm. Theuffy coat was removed and centrifuged again for 10 min at 1,400 rpm and then processed for flow cytometry (see *Flow cytometry*). All studies were approved by the University of California San Diego Human Subjects Committee.

Immunostaining. Mouse lungs were fixed by intratracheal instillation of 4% paraformaldehyde, embedded in paraffin, and cut into 3-μm-thick sections for immunostaining. The tissue sections were deparaffinized, rehydrated in graded alcohol, and encircled with a hydrophobic film (ImmEdge PEN, Vector Laboratories). For retrieval of antigens, slides were placed in 10 mM sodium citrate buffer (pH 6.0) at a subboiling temperature for 10 min. For phosphorylated EGF receptor (p-EGFR) staining, sections were digested with protease K (Sigma-Aldrich) at a final concentration of 40 μg/ml in PBS for 5 min. Sections were treated in 3% hydrogen peroxide in distilled water for 10 min to quench endogenous peroxidase activity. Nonspecific protein binding was blocked with 2% goat serum in PBS for 30 min. Primary antibodies were diluted in blocking buffer and incubated overnight at 4°C.
4°C at a final dilution of 1:200 for EGFR Ab and 1:25 for p-EGFR Ab, respectively. EGFR was detected using rabbit anti-human EGFR antibody (sc-03, Santa Cruz Biotechnology) directed against amino acid residues 1005–1016, which are identical to corresponding sequences in murine EGFR. p-EGFR was detected using rabbit anti-p-EGFR (Tyr845) antibody 2231 (Cell Signaling Technology) directed against phosphorylated Tyr845. After primary antibody binding, sections were washed with PBS and then incubated with biotinylated goat anti-rabbit IgG (2 μg/ml) followed by signal amplification using the Elite ABC method and 3,3′-diaminobenzidine chromogen according to the manufacturer’s protocols (Vector Laboratories). Sections were counterstained with hematoxylin and mounted with glycerol gelatin (Sigma). EGFR- and p-EGFR-positive epithelial cells were counted and divided by the number of total epithelial cells to obtain the number of positive cells per airway. Six airways per mouse and ≥100 total epithelial cells per airway were analyzed.

Statistical analyses. Statistical analysis was performed using GraphPad Prism software. Mann-Whitney test was used where indicated. \(P < 0.05 \) was considered statistically significant.

RESULTS

Alternaria specifically induces innate eosinophilia dependent on IL-33R. To determine the innate immune response to the fungal allergen *Alternaria*, naive mice were treated with a single challenge with *Alternaria* extract, and BAL was performed 3, 6, and 12 h later. BAL eosinophils accumulated as early as 3 h and continued to increase by 12 h after challenge (Fig. 1A). IL-33 is a proinflammatory cytokine implicated in promoting Th2-type responses that lead to eosinophilic lung inflammation, even in the absence of adaptive immune cells

![Fig. 1](http://ajplung.physiology.org/)
High levels of BAL IL-33 were detected after a single Alternaria challenge (Fig. 1B), peaking at 3 h and trending downward by 12 h, and were not present after PBS challenge. In contrast, BAL levels of the proinflammatory type 2 mediator IL-25 were not significantly increased 3 and 12 h after Alternaria challenge (Fig. 1C). The chemokines CCL11/eotaxin-1 and CCL24/eotaxin-2 mediate eosinophil chemotaxis into the lung, and we detected increased BAL levels of CCL11 and CCL24 at 12 h after Alternaria challenge (Fig. 1D). Interestingly, levels of the Th2 cytokine IL-4 were not significantly increased at the time points measured (Fig. 1E), although IL-5 and IL-13 were detectable in BAL as early as 3 h and increased by 12 h (Fig. 1, F and H). IL-9 and IFN-γ were not different between PBS- and Alternaria-challenged mice (Fig. 1, G and I). Thus a single airway challenge with Alternaria induces an IL-33R-dependent innate eosinophilic response, with dramatic increases in IL-33 and the Th2 cytokines IL-5 and IL-13.

We next compared the innate airway response in naive mice receiving Alternaria with the response after challenge with the same dose of Aspergillus, D. pteronyssinus HDM, or Candida allergen. Surprisingly, an increase in BAL eosinophils, as well as in IL-33, IL-5, and IL-13, was observed only in Alternaria-challenged mice (Fig. 2). BAL neutrophils were increased in mice receiving Aspergillus, D. pteronyssinus HDM and Candida allergen challenges compared with PBS-challenged mice, suggesting that these allergens had reached the lung and were able to induce an inflammatory response (not shown). Thus Alternaria uniquely induces rapid onset of high levels of IL-33, as well as innate eosinophilia.

Alternaria induces Th2 cytokine production in IL-33R-expressing lung NHCs. As the recently described NHCs, a lineage-negative lymphocyte population, express the IL-33R (T1/ST2) and respond to IL-33 by production of Th2 cytokines (26), we next investigated if a similar population was activated in the lungs following Alternaria challenge. Lung cells from mice that received a single challenge of Alternaria or PBS were stained with a lineage cocktail that allows for exclusion of B, T, NK, and NKT cells, as well as mast cells, basophils, granulocytes, dendritic cells, and macrophages. CD45-positive lymphocytes were gated, and lineage-negative IL-33R (T1/ST2)-positive cells were analyzed (Fig. 3A). Cytospin preparations of sorted lineage-negative IL-33R-positive cells revealed lymphocyte morphology with scant cytoplasm. Nearly all the lineage-negative cells were IL-33R-positive and expressed Sca-1, c-Kit, IL-7R, Thy1.2, CD25, and CD44 (Fig. 3B). Expression of these markers is most consistent with previously described NHCs (26).

To determine whether lung NHCs produce the Th2 cytokines IL-5 and IL-13, we performed intracellular staining (Fig. 3C). WT mice were given one intranasal challenge with Alternaria or PBS, and lungs were processed for FACS analysis 3 h later. In PBS-challenged (control) mice, the percentage of IL-5- and IL-13-producing lung NHCs was increased compared with isotype control staining, suggesting that low levels of IL-5 and IL-13 production may be constitutive. Over one-third of the lung NHCs from Alternaria-challenged mice were IL-5- and/or IL-13-positive when measured ex vivo. Thus IL-5 and IL-13 production in lung NHCs is rapid and robust within a few hours of a single Alternaria exposure.

We further investigated whether NHC numbers and cytokine production were affected by multiple challenges with Alternaria. After four challenges over 9 days with Alternaria or...
PBS, NHC numbers increased nearly sevenfold in the lung in Alternaria-challenged mice (Fig. 3D). Intracellular IL-5 staining revealed that significantly more IL-5 was produced in NHCs from Alternaria- than PBS-challenged mice (Fig. 3D).

Lung NHCs express GATA-3 and IL-5 independent of STAT6. The transcription factors ETS-1 and GATA-3 bind to the IL-5 and IL-13 promoters and can synergize for Th2 cytokine production (35, 37). We performed intracellular staining for NHC GATA-3 and ETS-1 expression in lungs of mice exposed to PBS or Alternaria were gated and analyzed for IL-5 and IL-13 production or isotype staining. D: total lung NHCs after 1 and 4 challenges with PBS or Alternaria (left) and NHC intracellular IL-5 after 4 challenges with PBS or Alternaria (right). Results in A–D are representative of 2–3 independent experiments and pooled lungs from 2–4 mice per group. E: BAL eosinophils and serum IgE after 4 challenges with Alternaria or PBS (n = 4 mice per group). *P < 0.05, **P < 0.01, by Mann-Whitney test.

GATA-3 can be induced in STAT6-dependent and -independent manners (14, 31). We thus investigated whether GATA-3 expression in lung and bone marrow NHCs requires STAT6. Lung NHCs from WT and STAT6−/− naive mice were stained for GATA-3 and ETS-1 expression (Fig. 4C). We were surprised to find no significant difference in intracellular GATA-3 and ETS-1 expression in NHCs from STAT6−/− compared with WT mice. We also measured intracellular NHC IL-5 production in naive and Alternaria-challenged WT and STAT6−/− mice (Fig. 4D). Consistent with GATA-3 expression, there was no significant difference in NHC IL-5 before or after Alternaria challenge. This suggests that, unlike conventional Th2 cells, STAT6 does not regulate NHC GATA-3 expression or IL-5 production in vivo.

STAT6 regulates lung NHC proliferation and innate eosinophilia. As STAT6 has been reported to regulate proliferation of many cell types, we investigated whether STAT6 regulated numbers or proliferation of lung NHCs after Alternaria challenge. In WT mice, the number of lung NHCs increased sig-
significantly 3 days after one challenge with *Alternaria* compared with the number of NHCs in naive mice and 12 h after challenge (Fig. 5A). In contrast, the total number of lung NHCs from STAT6−/− mice did not significantly increase 3 days after challenge (Fig. 5A). The receptors upstream of STAT6 signaling are IL-4R and IL-13R. To determine whether lung NHCs express IL-4R and IL-13R, which could induce NHC STAT6-mediated responses, we stained lung NHC for IL-4R and IL-13R (Fig. 5B). We found that IL-4R and IL-13R were significantly upregulated by 3 days after one *Alternaria* challenge. This suggests that one challenge with *Alternaria* primes lung NHCs to respond to IL-4 and IL-13 for induction of STAT6-mediated signals and that accumulation of lung NHCs partially depends on STAT6.

To determine whether proliferation of STAT6−/− NHCs was impaired in vivo and possibly accounts for the decreased numbers in STAT6−/− mice after *Alternaria* challenge, we performed NHC Ki-67 nuclear staining (Fig. 5C). Lung NHCs from naive WT and STAT6−/− mice displayed a similar and low level of proliferation (Ki-67+ NHCs). At 3 days after a single challenge with *Alternaria*, the percentage of proliferating lung NHCs from WT mice increased over fivefold (Fig. 5C). In contrast, only a modest increase in proliferation was observed in STAT6−/− lung NHCs from challenged mice compared with NHCs from unchallenged mice. Concomitant with a reduction in number and proliferation of lung NHCs in STAT6−/− mice, BAL eosinophils were significantly reduced compared with WT mice (Fig. 5D). BAL CCL11 and CCL24 levels were also significantly decreased in *Alternaria*-challenged STAT6−/− compared with WT mice (Fig. 5E). Thus STAT6 regulates NHC number and proliferation and innate eosinophilia induced by a single *Alternaria* challenge in non-sensitized mice. Furthermore, the receptors (IL-4R and IL-13R) upstream of STAT6 are significantly upregulated on lung NHCs after one challenge, suggesting that lung NHCs become primed to respond to IL-4/IL-13, leading to activation of STAT6 signaling.

Alternaria-induced innate eosinophilia is absent in mice lacking lung NHCs. To determine whether the presence of lung NHCs was required for the innate Th2-type response to *Alternaria*, we challenged mice that lack lung NHCs (IL-7R−/−). IL-7R (CD127) is expressed by lung NHCs from WT mice (Fig. 3B). Signaling through IL-7R occurs through the common gamma chain (γc), which is required for the presence of NHCs in the abdominal fat-associated lymphoid clusters, as they are absent in γc-deficient, as well as IL-7R−/−, mice (26, 42). Lung NHCs were indeed absent in IL-7R−/− compared with

Fig. 4. NHCs express GATA-3 and ETS-1 constitutively independent of STAT6. A and B: single-cell suspensions from lung and bone marrow of naive mice were stained for surface lineage, CD45, IL-33R (T1/ST2), and intracellular ETS-1 or GATA-3. Lineage-positive and -negative T1/ST2-positive lymphocytes (left) were gated, and ETS-1 and GATA-3 expression was determined (middle and right). C: intracellular staining of single-cell suspensions from naive WT and STAT6−/− mouse lungs for GATA-3 and ETS-1 after gating on lineage-negative T1/ST2-positive cells. Solid gray peaks represent isotype staining. D: WT and STAT6−/− NHC intracellular IL-5 production from naive mice and 12 h after *Alternaria* challenge (Alt). Results are representative of 2–3 independent experiments; lungs and bone marrow were pooled from 2–4 mice per group.
WT and RAG2−/− mice (Fig. 6A). Next, we administered a single intranasal challenge with Alternaria or PBS to WT, RAG2−/−, and IL-7R−/− mice and determined levels of eosinophils and IL-5 at 12 h. Compared with WT mice, Alternaria-challenged IL-7R−/− mice did not mount an innate eosinophilia, and BAL IL-5 levels were similar in Alternaria-challenged IL-7R−/− mice and PBS-challenged WT mice (Fig. 6B). As IL-7R−/− mice have severely reduced T and B cell compartments, in addition to impaired NHC development, we also examined NHC responses in RAG2−/− mice that lack T and B compartments but have normal NHC responses. RAG2−/− mice had significantly increased BAL eosinophils and IL-5 levels compared with IL-7R−/− mice at 12 h (Fig. 6C). The percentage of eosinophils in single-cell suspensions from lungs was increased in WT and RAG2−/− mice as early as 3 h after challenge, whereas eosinophils were nearly absent in PBS and IL-7R−/− mice (Fig. 6D). The percent NHCs, BAL eosinophils, and IL-5 were detected at higher levels in RAG2−/− than WT mice. BAL neutrophils were not significantly different between WT, RAG2−/−, and IL-7R−/− mice challenged with Alternaria (not shown), suggesting that NHC and IL-7R contribute specifically to the innate eosinophilic response. Taken together, IL-7R is required for the presence of lung NHCs as well as innate lung eosinophilia and IL-5 production after Alternaria challenge.

Alternaria induces NHC amphiregulin expression and activation of EGFR signaling. In addition to production of Th2 cytokines, innate lymphoid cells in the lung have recently been reported to produce the growth factor amphiregulin during influenza infection in mice (24). Amphiregulin has been implicated in asthma pathogenesis mainly as a proremodeling/repair mediator that was elevated during acute exacerbations (10, 17, 30, 41, 45), but whether allergens can induce amphiregulin in vivo in the lung has not been reported. We measured amphiregulin levels in the airway 12 h after a single allergen challenge with Alternaria, Aspergillus, Candida, or D. pteronyssinus HDM and found significantly increased amphiregulin levels only in mice challenged with Alternaria (Fig. 7A). BAL levels of soluble amphiregulin were detectable as early as 3 h after challenge with Alternaria and increased further at 12 h. The receptor for amphiregulin is EGFR, which is expressed primarily in the airway epithelium and is phosphorylated upon activation by EGFR ligand binding (40). Immunostaining of lung sections of Alternaria- and PBS-challenged mice revealed similar expression of EGFR in both groups and localization to the airway epithelium (Fig. 7B). In contrast, p-EGFR staining...
was significantly increased in the airway epithelium from *Alternaria*-challenged mice compared with PBS-challenged mice. These data suggest that amphiuregulin and activation of EGFR, the receptor for amphiuregulin, are induced within 12 h after *Alternaria* challenge.

Amphiregulin is initially upregulated on the cell surface prior to cleavage into the soluble form. Lung NHC surface amphiregulin from PBS-challenged mice revealed minimal expression, but expression was significantly increased 6 h after *Alternaria* challenge (Fig. 7C). In contrast to *Alternaria*-challenged mice, we found no difference in lung NHC surface expression or BAL levels of amphiregulin after challenges with other extracts compared with PBS-challenged mice (Fig. 7D). We then measured NHC amphiregulin expression in STAT6−/− mice after *Alternaria* challenge and found a significant reduction in surface amphiregulin expression compared with *Alternaria*-challenged WT mice (Fig. 7E). This suggests that *Alternaria* promotes NHC Th2 cytokine production as well as expression of the pro-remodeling/repair growth factor amphiregulin, which is partially dependent on STAT6.

Human lineage-negative CRTH2+/CD127+ lymphocytes express GATA-3 and ETS-1. Limited reports are available that demonstrate the presence lineage-negative innate lymphoid cells in humans. A recent study demonstrated expression of the prostaglandin D2 receptor CRTH2, a marker for human Th2 cells, on innate lymphoid cells in human peripheral blood and tissues (23). We investigated whether lineage-negative lymphocytes that were positive for CRTH2 and CD127 constitutively expressed the Th2 transcription factors GATA-3 and ETS-1 similar to NHCs in human peripheral blood lymphocytes (23). We found that lineage-negative CRTH2+/CD127+ lymphocytes in human blood from allergic individuals highly expressed GATA-3 and ETS-1 compared with 60% of the lineage-negative lymphocytes expressed GATA-3 compared with 60% of the lineage-negative lymphocytes expressed GATA-3. Approximately 30% of lineage-negative CD127+ cells expressed GATA-3 compared with 60% of the lineage-negative CD127+ cells expressed GATA-3. This suggests that higher expression of GATA-3 in CRTH2+/CD127+ lineage-negative lymphocytes in the blood of allergic individuals than in the respective lineage-positive populations. Overall, transcription factors involved in IL-5 and IL-13 production were constitutively expressed in lung and bone marrow NHCs in mice, as well as in peripheral blood CRTH2+ lineage-negative lymphocytes in humans, suggesting that NHCs are primed from development for Th2 cytokine production in mice and humans.

DISCUSSION

Our studies demonstrate that *Alternaria*, an allergen specifically associated with severe asthma exacerbations (4, 9, 22, 28, 29, 32, 34), can activate NHCs to produce the Th2 cytokines IL-5 and IL-13, as well as upregulate the expression of IL-4R and IL-13R and the pro-remodeling/repair growth factor amphiregulin, which is elevated during asthma exacerbations (10, 17, 30, 41, 45). In addition, we demonstrated an important role for STAT6 in NHC proliferation, but not Th2 cytokine production, suggesting that the alternate transcription factors (GATA-3 and ETS-1) we identified to be expressed constitutively in mouse and human NHCs may play a more important role than STAT6 in rapid innate Th2 cytokine responses to *Alternaria*. In contrast to the very important role of STAT6 in Th2 cytokine production by lineage-positive conventional T cells, lineage-negative NHC production of Th2 cytokines occurred independent of STAT6.

Innate lymphoid cell types that produce large amounts of the Th2 cytokines IL-5 and IL-13 after IL-33 stimulation have only recently been described (26, 27, 33). Lung innate lymphoid cells are activated during influenza viral infection and contrib-
ute to airway hyperresponsiveness and tissue repair (5, 24). Our studies suggest that the fungal allergen *Alternaria* can specifically induce high levels of IL-33 and activate NHCs in the lung to produce Th2 cytokines. Influenza and other respiratory viruses can precipitate severe/life-threatening asthma exacerbations, similar to *Alternaria* exposure in some cases (4, 29, 32, 34), suggesting that NHC activation may be a link in asthma exacerbation.

We compared the innate response to *Alternaria* extract with the response to other allergens and found that *Alternaria* specifically induced high levels of IL-33 in the airway compared with *Aspergillus, Candida,* and *D. pteronyssinus* HDM. A previous report demonstrated that *Alternaria* induced airway IL-33 release that was dependent on the danger signal extracellular ATP (20), but comparative studies with other allergens in vivo have not been reported. The same group very recently showed that innate lymphoid cells in the lung mediate the eosinophilic response after three *Alternaria* challenges over 6 days (2). Our findings extend the important role of lung NHCs in the eosinophilic airway response to even earlier time points (within 12 h) and after only one challenge with *Alternaria*. The innate eosinophilia induced by *Alternaria* was abrogated by IL-33R blockade, suggesting that IL-33-induced NHC activation is the dominant mechanism after *Alternaria* challenge, although other direct or indirect mechanisms of NHC activation may be present. The finding that different aeroallergens may induce unique innate responses is supported by a report that the HDM *D. pteronyssinus* contains an accessory protein homolog of MD-2 that can activate Toll-like receptor 4 signaling (39). Our data suggest that *Alternaria* may specifically or more robustly direct innate responses through an IL-33/NHC pathway compared with other allergens, including HDM.

We found that NHCs in the lung and bone marrow from unchallenged mice constitutively express the transcription factors GATA-3 and ETS-1, which can synergistically induce Th2 cytokine transcription (35, 37). A recent study demonstrated that GATA-3 was required for accumulation of IL-13-producing innate Th2 cells in the lungs after helminth infection, suggesting that GATA-3 does regulate innate lymphoid cells in the lung (21). The finding that NHCs in the bone marrow of mice, and a similar population in human blood, express GATA-3 and ETS-1 suggests that the cells are primed from development for rapid and robust Th2 cytokine production. This notion is supported by a recent report showing that a similar lineage-negative T1/ST2-positive population in the bone marrow is responsive to IL-33 and produces IL-5 and IL-13 (3). The aim of our studies of NHCs in human blood was to determine whether ETS-1 and GATA-3 are constitutively expressed. Future investigation is required to determine whether there are differences in NHC numbers or responses.
between patients with allergic rhinitis and healthy controls or patients with asthma.

The transcription factor GATA-3 can be induced in STAT6-dependent and -independent manners (14, 31). We found that lung NHC GATA-3 expression was not reduced in STAT6−/− mice, suggesting that lung NHCs maintain GATA-3 expression in a STAT6-independent manner. In Th2 cells, IL-4 and IL-13 signaling activates STAT6 and GATA-3 to promote Th2 cytokine production and Th2 differentiation (13). Our findings of similar GATA-3 expression and IL-5 production from STAT6−/− lung NHCs suggest a differential regulation of Th2 cytokine production in NHCs compared with Th2 cells that are largely STAT6-dependent.

Interestingly, we detected a reduction in NHC numbers and proliferation in the lungs of STAT6−/− mice after one challenge with Alternaria compared with WT mice, suggesting a novel role for STAT6 in the regulation of NHCs. This finding is consistent with a recent report showing that STAT6 regulated the total numbers of innate Th2 cells in the lungs of helminth-infected mice (21). The upregulation of receptors for IL-4 and IL-13 on NHCs and reduction in proliferation in STAT6−/− NHCs after Alternaria challenge suggest that STAT6 directly regulates NHC proliferation, although we cannot exclude contributions to NHC proliferation by STAT6 signaling in other cell types such as macrophages, dendritic cells, and airway epithelium. Our findings are consistent with a known proliferative role of STAT6 in many cell types (reviewed in Ref. 11). Additionally, our previous studies demonstrated that bone marrow–derived cells expressing STAT6 are required for eosinophil accumulation after a single Alternaria challenge (7). Our current studies show that STAT6 is not required for NHC IL-5 production and suggest that other cell types may produce eosinophil chemoattractants, such as eotaxins, in a STAT6-dependent manner, which may be responsible for the reduction of eosinophils in STAT6−/− mice (18, 43, 46). Thus NHCs are likely an important source of IL-13 that may subsequently induce STAT6-dependent eotaxin-1 and eotaxin-2 production in other cell types, such as dendritic cells and macrophages, that promote eosinophilia. This is consistent with a recent report showing that depletion of macrophages and dendritic cells in the lung resulted in a significant reduction of BAL eotaxin levels after allergen challenge (6).

An increased percentage of NHCs in RAG2−/− compared with WT mice is in part due to the absence of B and T cells in the lineage-negative lymphocyte gate in RAG2−/− samples, leading to an increase in the percentage of all non-B non-T cells, including NHCs. We did detect increased BAL IL-5 and eosinophils in RAG2−/− compared with WT mice. This is consistent with another report that identified an increased percentage of lineage-negative lymphocytes, as well as BAL IL-5 and IL-13 production, in RAG−/− compared with WT mice after multiple Alternaria challenges (2). We also detected an increase in total lung NHCs in RAG2−/− mice (not shown) compared with WT C57BL/6 mice. These findings may be due to an increase in non-B non-T lymphocyte compartments as a result of increased homeostatic proliferation, as is well documented after lymphocyte transfer to RAG−/− mice and is IL-7-dependent (38). An increase in RAG−/− NHCs may account for increased cytokines and eosinophilia, thus further highlighting the important role of non-B non-T NHCs.

We found that Alternaria induces amphiregulin in the airway and on NHCs in the lung and induces activation of EGFR, the receptor for amphiregulin in bronchial epithelium. Thus lung NHC amphiregulin expression in response to Alternaria challenge is associated with activation of its receptor on airway epithelium, suggesting a mechanism for NHC to modulate epithelial cell function in asthma. Amphiregulin has been found to be elevated in asthma patients during exacerbations and may contribute to airway remodeling features, including mucus production (10, 17, 30, 41, 45). Importantly, a recent report showed that amphiregulin was highly expressed in microarray studies of sorted innate lymphoid cells in the lung compared with lymphoid tissue inducer cells in the spleen of naive mice (24). In vivo administration of recombinant amphiregulin after influenza viral infection led to improved tissue repair in mice...
STAT6 REGULATES LUNG NATURAL HELPER CELLS

L587

depleted of innate lymphoid cells, suggesting that amphiregu-
lin has a protective role. In contrast, in vitro studies (10, 30, 41,
45) suggest that amphiregulin may contribute to pathological
remodeling responses. The precise role of amphiregulin in
protecting or contributing to airway remodeling in asthma
requires further investigation, although a novel finding from
our studies is that NHC surface amphiregulin is significantly
upregulated after Alternaria challenge and is partially depen-
dent on STAT6.

In summary, our studies demonstrate the novel finding that
Alternaria, an allergen specifically associated with severe
asthma exacerbations, induces an innate NHC-mediated rapid
burst of Th2 cytokine (IL-5 and IL-13) production, as well as
expression by NHCs of IL-4R, IL-13R, and amphiregulin, and
initiates eosinophilic inflammation compared with other aller-
gens such as Aspergillus, D. pteronyssinus HDM, or Candida.
In addition, we have demonstrated an important role for
STAT6 in NHC proliferation, but not Th2 cytokine production,
suggesting that alternate transcription factors (GATA-3 and
STAT6 in NHC proliferation, but not Th2 cytokine produc-
tion) we identified to be expressed constitutively in mouse and
human NHCs may play a more important role than STAT6 in
rapid innate Th2 cytokine response to Alternaria. In contrast
to the very important role of STAT6 in Th2 cytokine produc-
tion by lineage-positive conventional T cells, lineage-negative
NHC production of Th2 cytokines occurred independent of
STAT6. The ability of Alternaria to rapidly induce IL-33, as
well as the constitutive expression by NHCs of GATA-3 and
ETS-1, may contribute significantly to a rapid Th2 innate
response that could trigger asthma exacerbations.

REFERENCES

1. Barlow JL, Bellosi A, Hardman CS, Drynan LF, Wong SH, Cruick-
shanck JP, McKenzie AN. Innate IL-13-producing nuocytes arise during
allergic lung inflammation and contribute to airways hyperreactivity. J

Kita H. IL-33-responsive lineage-CD25+ CD44hi lymphoid cells me-
diate innate type 2 immunity and allergic inflammation in the lungs. J

3. Brickshawana A, Shapiro VS, Kita H, Pease LR. Lineage-Scal1c-Kit−
CD25+ cells are IL-33-responsive type 2 innate cells in the mouse bone

4. Bush RK, Prochnau JJ. Alternaria-induced asthma. J Allergy Clin

5. Chang YJ, Kim HY, Albacker LA, Baumgarth N, McKenzie AN,
Smith DE, DeKruyff RH, Umetsu DT. Innate lymphoid cells mediate
influenza-induced airway hyper-reactivity independently of adaptive

6. Crapster-Pregont M, Yeo J, Sanchez RL, Kuperman DA. Dendritic
cells and alveolar macrophages mediate IL-13-induced airway inflamma-
tion and chemokine production. J Allergy Clin Immunol 129: 1621–1627,
2012.

JY, Pham A, Miller M, Croft M, Broide DH. Alternaria induces
STAT6-dependent acute airway eosinophilia and epithelial FIZZ1 expres-
sion that promotes airway fibrosis and epithelial thickness. J Immunol 188:

JY, Norris PS, Choi H, Scheu S, Pfeffer K, Zuraw BL, Ware CF,
Broide DH, Croft M. The tumor necrosis factor family member LIGHT

9. Downs SH, Mitakakis TZ, Marks GB, Car NG, Belousova EG, Leuppi
JD, Xuan W, Downie SR, Tobias A, Feat JK. Clinical importance of
Alternaria exposure in children. Am J Respir Crit Care Med 164: 455–

10. Enomoto Y, Orihara K, Takamasa T, Matsuda A, Gon Y, Saito H, Ra
C, Okayama Y. Tissue remodeling induced by hypersensitized epidermal
growth factor and amphiregulin in the airway after an acute asthma attack.

12. Halim TY, Krauss RH, Sun AC, Takei F. Lung natural helper cells are
a critical source of Th2 cell-type cytokines in protease allergen-induced

13. Hershey GK. IL-13 receptors and signaling pathways: an evolving web.

14. Ho IC, Tai TS, Pai SY. GATA3 and the T-cell lineage: essential
functions before and after T-helper-2-cell differentiation. Nat Rev Immu-

15. Iikuni T, Yanagibashi T, Ogawara M, Tsunemaya K, Yamamoto
Identification of innate IL-5-producing cells and their role in lung eosin-

16. Kim HY, Chang YJ, Subramanian S, Lee HH, Albacker LA, Matang-
angkola M, Sonnenberg GF, Abt MC, Alenghat T, Ziegler CG,
Monticelli LA, Sonnenberg GF, Abt MC, Alenghat T, Ziegler CG,
Monticelli LA, Matangangkola M, Sonnenberg GF, Abt MC, Alenghat T,
Ziegler CG, Monticelli LA, Matangangkola M, Sonnenberg GF, Abt MC,
Alenghat T, Ziegler CG, Monticelli LA, Matangangkola M, Sonnenberg
GF, Abt MC, Alenghat T, Ziegler CG, Monticelli LA, Matangangkola
M, Sonnenberg GF, Abt MC, Alenghat T, Ziegler CG, Monticelli LA,
Matangangkola M, Sonnenberg GF, Abt MC, Alenghat T, Ziegler CG,
Monticelli LA, Matangangkola M, Sonnenberg GF, Abt MC, Alenghat T,
Ziegler CG, Monticelli LA, Matangangkola M, Sonnenberg GF, Abt MC,
Alenghat T, Ziegler CG, Monticelli LA, Matangangkola M, Sonnenberg
GF, Abt MC, Alenghat T, Ziegler CG, Monticelli LA, Matangangkola
M, Sonnenberg GF, Abt MC, Alenghat T, Ziegler CG, Monticelli LA,
Matangangkola M, Sonnenberg GF, Abt MC, Alenghat T, Ziegler CG,
Monticelli LA, Matangangkola M, Sonnenberg GF, Abt MC, Alenghat T,
Ziegler CG, Monticelli LA, Matangangkola M, Sonnenberg GF, Abt MC,
Alenghat T, Ziegler CG, Monticelli LA, Matangangkola M, Sonnenberg
GF, Abt MC, Alenghat T, Ziegler CG, Monticelli LA, Matangangkola
M, Sonnenberg GF, Abt MC, Alenghat T, Ziegler CG, Monticelli LA,
Matangangkola M, Sonnenberg GF, Abt MC, Alenghat T, Ziegler CG,
Monticelli LA, Matangangkola M, Sonnenberg GF, Abt MC, Alenghat T,
Ziegler CG, Monticelli LA, Matangangkola M, Sonnenberg GF, Abt MC,
Alenghat T, Ziegler CG, Monticelli LA, Matangangkola M, Sonnenberg
GF, Abt MC, Alenghat T, Ziegler CG, Monticelli LA, Matangangkola
M, Sonnenberg GF, Abt MC, Alenghat T, Ziegler CG, Monticelli LA,
Matangangkola M, Sonnenberg GF, Abt MC, Alenghat T, Ziegler CG,
Monticelli LA, Matangangkola M, Sonnenberg GF, Abt MC, Alenghat T,
Ziegler CG, Monticelli LA, Matangangkola M, Sonnenberg GF, Abt MC,
Alenghat T, Ziegler CG, Monticelli LA, Matangangkola M, Sonnenberg
GF, Abt MC, Alenghat T, Ziegler CG, Monticelli LA, Matangangkola
M, Sonnenberg GF, Abt MC, Alenghat T, Ziegler CG, Monticelli LA,
Matangangkola M, Sonnenberg GF, Abt MC, Alenghat T, Ziegler CG,
Monticelli LA, Matangangkola M, Sonnenberg GF, Abt MC, Alenghat T,
Ziegler CG, Monticelli LA, Matangangkola M, Sonnenberg GF, Abt MC,
Alenghat T, Ziegler CG, Monticelli LA, Matangangkola M, Sonnenberg
GF, Abt MC, Alenghat T, Ziegler CG, Monticelli LA, Matangangkola
M, Sonnenberg GF, Abt MC, Alenghat T, Ziegler CG, Monticelli LA,
Matangangkola M, Sonnenberg GF, Abt MC, Alenghat T, Ziegler CG,
Monticelli LA, Matangangkola M, Sonnenberg GF, Abt MC, Alenghat T,
Ziegler CG, Monticelli LA, Matangangkola M, Sonnenberg GF, Abt MC,
Alenghat T, Ziegler CG, Monticelli LA, Matangangkola M, Sonnenberg
GF, Abt MC, Alenghat T, Ziegler CG, Monticelli LA, Matangangkola
M, Sonnenberg GF, Abt MC, Alenghat T, Ziegler CG, Monticelli LA,
Matangangkola M, Sonnenberg GF, Abt MC, Alenghat T, Ziegler CG,
Monticelli LA, Matangangkola M, Sonnenberg GF, Abt MC, Alenghat T,
Ziegler CG, Monticelli LA, Matangangkola M, Sonnenberg GF, Abt MC,