








within lung interstitium. Similar to findings observed in the
airways, the mean total number of leukocytes was increased in
Mcp-1 WT mice exposed to hyperoxia at birth on postinfection
day 3, whereas no differences in total leukocyte number were
observed in Mcp-1 KO mice. Notable differences in the mean
percentage of the various leukocyte phenotypes examined in
BAL fluid primarily included a significant increase in neutro-
phils and a significant decrease in macrophages in Mcp-1 KO
mice exposed to room air or hyperoxia at birth compared with
their WT counterparts on postinfection days 3 and 5 (Table 2).
No remarkable differences in the mean percentage of neutro-
phils, macrophages, and lymphocytes were observed in the
lung interstitium of Mcp-1 KO mice exposed to room air or
hyperoxia at birth (data not shown).

Neonatal hyperoxia promotes lung fibrosis in infected mice
independent of MCP-1. Lung fibrosis was assessed on postin-
fection day 14 by staining lung tissues with Trichrome and
antibodies against �-SMA (Fig. 8A). Interstitial thickening of
alveolar septae and extensive collagen deposition, as evidenced
by Trichrome staining, were readily apparent in lung tissues
harvested from infected mice exposed to hyperoxia at birth.
These fibrotic regions of lung tissue stained positive for
�-SMA, a marker of activated myofibroblasts. Mean levels of

total soluble collagen in lung tissues harvested from infected
Mcp-1 WT and Mcp-1 KO mice exposed to hyperoxia at birth
were comparable and significantly greater compared with lev-
els observed in infected siblings birthed into room air (Fig. 8B).

DISCUSSION

Increasing evidence supports the concept that early life
exposure to environmental factors, such as hyperoxia, can
interfere with the developmental programming of the lung,
resulting in altered lung structure and increased risk for respi-
ratory disease in susceptible individuals later in life (14, 36, 43,
46). If we consider that oxygen will continue to be used
therapeutically to treat preterm infants, then it is important to
understand how it can adversely change respiratory health later
in life. Here, using an established mouse model of persistent
pulmonary disease, we provide evidence that exposure to
neonatal hyperoxia increases leukocyte recruitment and fibro-
sis in adult mice infected with influenza virus through different
pathways (Fig. 9). While transgenic EC-SOD was involved in
a pathway that prevented hyperoxia-mediated lung fibrosis
following infection, it did not protect against a pathway that
promoted excessive recruitment of leukocytes or the produc-
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Fig. 6. Neonatal hyperoxia enhances MCP-1 expression in mice infected with influenza A virus. Adult Mcp-1 WT and KO mice exposed to RA or O2 at birth
were intranasally infected with a sublethal dose of influenza A virus. Levels of MCP-1 in bronchoalveolar lavage fluid were determined on postinfection days
3, 5, and 7 (ND � not detected, n � 4–6 mice/group, *P � 0.05).
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Fig. 5. Neonatal hyperoxia promotes alveolar simplifica-
tion independent of MCP-1. Representative hematoxylin-
eosin-stained lung tissues from adult Mcp-1 WT and
Mcp-1 knockout (KO) mice exposed to RA or O2 at birth.
Each image is representative of 6 mice examined/group.
Scale bar � 100 �m.
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tion of MCP-1. In contrast to EC-SOD, MCP-1 was required
for the pathway promoting excessive recruitment of leukocytes
to the lungs, but not the pathway leading to the development of
fibrosis, suggesting an uncoupling of inflammation from inter-
stitial lung disease. Hence, our findings suggest neonatal hy-
peroxia disrupts at least two distinct pathways that separately
control inflammation and alveolar repair following influenza A
virus infection.

It is generally accepted that oxygen-induced injury in the
lung is mediated through ROS (45, 47). While ROS are known
to be important mediators in pathways contributing to normal
cell growth and differentiation during lung development, they
can cause cellular and tissue injury when their production
exceeds the antioxidant capacity of the cell (45). Thus, any
interference with the developmental programming of the lung,
such as that mediated by increased production of ROS, during
a critical period of growth and development may increase the
risk for respiratory disease later in life. In fact, mice exposed to
neonatal hyperoxia demonstrate fewer alveolar type II cells as
adults and are more sensitive to infection with influenza A
virus, as defined by increased inflammation and the develop-
ment of fibrotic lung disease (5, 33, 51). Because alveolar type
II cells are considered progenitor cells within the lung (15),
their depletion as a result of exposure to hyperoxia at birth may
be contributing to the impaired ability of these mice to effec-
tively respond to and repair viral-mediated injury. Interest-
ingly, it has been shown that transgenic overexpression of
human EC-SOD preserves lung development in newborn mice
exposed to hyperoxia (1). This finding was subsequently at-
tributed, at least in part, to preservation of alveolar type II cell
proliferation, which was associated with a reduction in oxida-
tive DNA damage to the alveolar epithelium (2). Consistent

with preservation of lung development, overexpression of
EC-SOD limited hyperoxia-induced alveolar simplification, as
well as weight loss, mortality, and fibrotic lung disease follow-
ing infection with influenza A virus. Surprisingly, overexpres-
sion of EC-SOD did not blunt the excessive recruitment of
leukocytes or production of MCP-1. It is difficult to directly
compare our findings with children who were born prematurely
and treated with SOD for one month because transgenic EC-
SOD was constitutively expressed in type II cells throughout
the life of the mouse. Nevertheless, our findings show that
EC-SOD is involved in a pathway through which neonatal
hyperoxia reprograms normal alveolar repair, but not excessive
leukocyte recruitment, following infection. Therefore, EC-
SOD may be involved in a pathway that preserves alveolar
epithelial balance, thereby promoting normal repair in response
to injury.

Although the inflammatory infiltrate following a respiratory
viral infection is helpful in initially controlling an infection, it
can often be injurious to the host when excessive, resulting in
severe lung pathology (10, 25). Therefore, identifying factors
that contribute to the excessive recruitment of proinflammatory
leukocytes following infection in mice exposed to hyperoxia at
birth may help explain the augmented lung pathology observed
in these mice. One such factor is MCP-1, which, to date, is the
only leukocyte chemoattractant we have identified that is
selectively different in BAL fluid following infection in adult
mice exposed to hyperoxia at birth (33). Because levels of
MCP-1 in WT and EC-SOD Tg mice exposed to hyperoxia at
birth were elevated following infection compared with siblings
birthed into room air, it may be contributing to the excessive
leukocyte recruitment also observed in these mice. Neutrophil
and monocyte recruitment to the lungs is altered in Mcp-1- or
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Fig. 7. Excessive recruitment of leukocytes to lungs
of infected mice exposed to neonatal hyperoxia is
dependent upon MCP-1. Adult Mcp-1 WT and KO
mice exposed to RA or O2 at birth were intranasally
infected with a sublethal dose of influenza A virus.
Total leukocyte number in bronchoalveolar lavage
(BAL) fluid and postlavaged interstitium (Lung) were
determined on postinfection days 3, 5, and 7 (n � 5–7
mice/group, *P � 0.05 compared with RA WT).

Table 2. Differential leukocyte counts on postinfection days 3, 5, and 7

BAL Fluid

Day 3 Day 5 Day 7

WT KO WT KO WT KO

RA O2 RA O2 RA O2 RA O2 RA O2 RA O2

Neutrophils, % 43.1 � 1.8 53.0 � 2.2* 60.6 � 4.0� 65.4 � 1.9† 34.7 � 1.6 33.1 � 2.0 52.7 � 3.1� 44.3 � 2.6 12.1 � 2.4 10.7 � 2.1 14.5 � 2.4 17.0 � 2.9
Macrophages, % 54.4 � 2.0 43.9 � 1.8* 38.8 � 3.8� 32.1 � 2.0† 62.1 � 1.6 61.5 � 2.0 43.6 � 2.7� 51.5 � 2.7† 65.5 � 2.1 71.4 � 1.4* 62.6 � 2.9 66.6 � 2.0
Lymphocytes, % 3.1 � 0.6 3.1 � 0.6 3.8 � 1.3 2.5 � 0.4 3.2 � 0.6 5.4 � 0.8 4.0 � 0.8 4.2 � 0.7 22.3 � 3.1 17.9 � 1.3 23.0 � 3.2 16.4 � 1.9

Values are means � SE; n � 5–7 mice/group. Adult monocyte chemoattractant protein-1 WT and knockout (KO) mice exposed to RA or O2 at birth were
intranasally infected with a nonlethal dose of influenza A virus. Leukocytes in BAL fluid were collected on postinfection days 3, 5, and 7, and percentages of
neutrophils, macrophages, and lymphocytes were determined. *P � 0.05 compared with RA WT, �P � 0.05 compared with RA WT, and †P � 0.05 compared
with O2 WT.
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Mcp-1 receptor (CCR2)-deficient mice, and the mice are un-
able to effectively clear pathogen, suggesting the importance of
MCP-1 in mediating an adequate immune response (9, 11, 44).
We report here that the absence of MCP-1 gene expression in
infected adult mice exposed to hyperoxia at birth leads to a
significant reduction in the total number of leukocytes, primar-
ily macrophages, on postinfection days 3 and 7 in both BAL
fluid and lung interstitium. Our finding that total leukocyte
numbers were not different between any of the experimental
test groups on postinfection day 5 may be attributable to
variability in the kinetics of the innate immune response often
observed in this model. Regardless, our findings reveal the
existence of a pathway, involving MCP-1 gene expression,
through which exposure to neonatal hyperoxia promotes ex-
cessive recruitment of leukocytes to lungs of infected mice.

In addition to its role in mediating an adequate immune
response to influenza virus infection, MCP-1 has also been
suggested to contribute to lung fibrosis when aberrantly ex-

pressed. For example, clinical studies and in vivo studies in
mice have shown an association between elevated levels of
MCP-1 and the development of bronchiolitis obliterans, a
nonreversible obstructive lung disease (3, 48). Increased levels
of MCP-1 have also been detected in serum or BAL fluid
obtained from children and adults with interstitial lung disease
(19, 39). Moreover, overexpression of mutant MCP-1 or
knockout of the MCP-1 receptor (CCR2) confers protection
against bleomycin- or FITC-induced lung fibrosis in mice (21,
30, 35). In contrast to those findings, we report here that, even
in the absence of MCP-1 gene expression, fibrosis clearly
remains evident following infection in adult mice exposed to
hyperoxia at birth, as defined by increased collagen staining,
increased staining of �-sma-expressing myofibroblasts, and
increased total collagen protein in the lungs. Similarly, in a
mouse model of experimental allergic asthma, airway fibrosis
was demonstrated in the absence of MCP-1 or its receptor (26).
Given the potential for chemokine redundancy in our model, it
is possible that other monocyte chemoattractants could be
compensating for the lack of MCP-1 gene expression and
contributing to the observed fibrosis in infected mice exposed
to hyperoxia at birth. For example, increased levels of the
monocyte chemoattractant protein MIP-1� have been observed
in patients with cystic fibrosis and in a mouse model of
bleomycin-induced pulmonary fibrosis (31, 37). However, we
have previously shown that levels of MIP-1� in BAL fluid
collected from infected adult mice exposed to hyperoxia at
birth were not different from levels in infected siblings birthed
into room air during any of the postinfection time points
examined in the study (33). Nevertheless, additional studies are
needed to determine if proinflammatory chemokines or cyto-
kines other than MCP-1 are able to contribute to the observed
lung fibrosis in our model.

On the other hand, lung fibrosis is currently considered to be
principally due to recurrent epithelial injury and abnormal
repair (20). Our finding that excessive leukocyte recruitment to
the lungs following influenza virus infection in adult mice
exposed to hyperoxia at birth is uncoupled from lung fibrosis is
consistent with this concept. In fact, studies examining bleo-
mycin-induced lung fibrosis in Smad3-deficient mice or mice
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Fig. 8. Fibrotic lung disease observed in infected mice exposed to hyperoxia as neonates is not dependent upon MCP-1. Adult Mcp-1 WT and KO mice exposed
to RA or O2 at birth were intranasally infected with a sublethal dose of influenza A virus. A: lung tissues were harvested on postinfection day 14 and were stained
with Gomori’s Trichrome stain to visualize collagen deposition and antibodies against �-�-sma (red), followed by counterstaining with DAPI (blue) to visualize
activated myofibroblasts. Each image is representative of 5 mice examined/group. B: total collagen protein in the lungs of infected adult mice exposed to RA
or O2 at birth was measured by the Sircol Collagen Assay on postinfection day 14 (n � 7–8 mice/group, *P � 0.05 compared with RA WT, #P � 0.05 compared
with RA KO). Scale bar in A � 100 �m.

Fig. 9. Cartoon model depicting how neonatal hyperoxia reprograms the host
response to influenza A virus through different pathways. MCP-1 is involved
in a pathway that promotes excessive leukocyte recruitment to the lungs
following influenza virus infection in adult mice that had been exposed to
hyperoxia as neonates, whereas EC-SOD is involved in a pathway that
prevents the development of fibrotic lung disease.
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treated with anti-ICAM-1 antibody have shown that inflamma-
tion is not solely responsible for the fibrotic phenotype (28,
52). Inflammation may therefore play a role in the progression,
but not initiation, of fibrotic disease (6). Interestingly, the
enhanced inflammation associated with certain viral infections
has recently been recognized as a potential exacerbating agent
in the development of lung fibrosis (42). Moreover, we have
recently shown that neonatal hyperoxia increases the sensitiv-
ity of adult mice to bleomycin-induced lung fibrosis, which
was primarily associated with a disproportionate increase in
neutrophils, which is not observed in mice infected with
influenza A virus (49). Depletion of neutrophils in these mice
with anti-Gr-1 antibody reduced the early activation of trans-
forming growth factor-�1 and attenuated the hyperoxia-en-
hanced fibrosis. Hence, identifying pathways that contribute to
the progression of lung fibrosis is important and may be useful
for the identification of individuals born prematurely who are
at increased risk for interstitial lung disease later in life.

The primary objective of this study was to identify possible
pathways through which neonatal hyperoxia alters the sensi-
tivity to viral infection later in life. There are, of course,
limitations that make it difficult to extrapolate our experimental
findings to humans born preterm and prematurely exposed to
high levels of oxygen at birth. To successfully carry out this
work, we deliberately infected immune competent adult mice
with a sublethal viral inoculum to investigate how early life
exposure to oxygen compromises host responses to infection
later in life. This experimental approach was chosen since it is
difficult to manipulate neonatal mice and achieve sublethal
doses of influenza virus. In addition, the work reported herein
used only a single strain of influenza A virus. We have
previously shown that host resistance of adult mice to several
different strains of influenza virus, including HKx31 (H3N2),
A/CA/04/09 (H1N1), and A/PR/8/34 (H1N1), was similarly
reduced by exposure to neonatal hyperoxia (18). Therefore,
while our findings do not address the role of MCP-1 or
EC-SOD during infection with other strains of influenza virus
(or in other strains of mice), identification of these pathways
within this system improves our understanding of why indi-
viduals born preterm are at increased risk for respiratory
disease later in life.

In summary, we have shown that EC-SOD is involved in a
pathway that prevents neonatal hyperoxia-mediated lung fibro-
sis following influenza virus infection, and that MCP-1 gene
expression is involved in a pathway that contributes to the
excessive recruitment of leukocytes in these mice. These data
suggest that neonatal hyperoxia differentially reprograms lung
development and likely disrupts multiple pathways contribut-
ing to the pulmonary response to viral infection later in life.
Ultimately, our findings suggest that multiple therapeutic strat-
egies may be needed to provide complete protection against
diseases attributed to prematurity and early life exposure to
oxygen.
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