Peroxisome proliferator activated receptor-\(\gamma\) (PPAR-\(\gamma\)) inhibits Cigarette Smoke Solution-induced Mucin Production in human airway epithelial (NCI-H292) cells.

Sung Yong Lee, Eun Joo Kang, Gyu Young Hur, Ki Hwan Jung, Hye Cheol Jung, Sang Yeub Lee, Je Hyeong Kim, Chol Shin, Kwang Ho In, Kyung Ho Kang, Se Hwa Yoo, and Jae Jeong Shim

1 Department of Internal Medicine, Guro Hospital, Korea University Seoul 152-703;
2 Department of Internal Medicine, Anam Hospital, Korea University, Seoul 136-705;
3 Department of Internal Medicine, Ansan Hospital, Korea University, Ansan, Korea 425-707.

Running head: PPAR\(\gamma\) agonist inhibits Cigarette Smoke-induced Mucin Production

Correspondence: J. J. Shim

Division of Pulmonary and Critical Care, Department of Internal Medicine, Korea University Guro Hospital, # 80, Guro-dong, Guro-gu, Seoul, Republic of Korea (135-702)

Phone: 82-2-8186639
Fax: 82-2-8659670
E-mail: jaejshim@kumc.or.kr

Copyright © 2006 by the American Physiological Society.
Abstract

The main etiologic factor for chronic bronchitis is cigarette smoke. Exposure to cigarette smoke is reported to induce goblet cell hyperplasia and mucus production. Mucin synthesis in airways has been reported to be regulated by EGFR system. Peroxisome proliferator activated receptor-γ (PPAR-γ) is a member of the ligand-activated nuclear receptor superfamily. PPAR-γ is implicated in anti-inflammatory responses, but mechanisms underlying these varied roles remain ill-defined. Recently, reports have shown that upregulation of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) might be one of the mechanisms through which PPAR-γ agonists exert their anti-inflammatory actions. However, no data are available on the role of PPAR-γ in smoke-induced mucin production. In this study, we investigated the effect of PPAR-γ agonist (rosiglitazone) on smoke-induced mucin production in NCI-H292 cells. Exposure to cigarette smoke causes a significant decrease in PTEN expression and increases dose-dependent EGFR-specific tyrosine phosphorylation, resulting in MUC5AC mucin production in NCI-H292 cells. PPAR-γ agonists or specific inhibitors of phosphoinositide 3-kinase (PI3K) exert inhibition of cigarette smoke induced mucin production, with the upregulation of PTEN signaling and down-regulation of Akt expression. This study demonstrates that PPAR-γ agonist function as a regulator of epithelial cell inflammation that may result in reduction of mucin-producing cells in airway epithelium.

Keywords: PPAR-γ, Rosiglitazone, EGFR, PTEN, smoking
Introduction

The clinical hallmarks of chronic bronchitis are cough and excessive mucus production (40, 46). The main etiologic factor for chronic bronchitis is cigarettes smoke. Exposure to cigarette smoke is reported to induce goblet cell hyperplasia and mucus production in several species (24, 33, 46). Mucin synthesis in airways has been reported to be regulated by the epidermal growth factor receptor (EGFR) system: activation of EGFR tyrosine kinase by its ligands lead to the synthesis of mucin MUC5AC at both mRNA and protein levels in airway epithelial cells in vitro and causes mucin MU5AC production and goblet cell metaplasia in vivo (6, 15, 29, 33, 41, 42, 44, 45). Cigarette smoke can upregulate the EGFR mRNA expression and induce activation of EGFR-specific tyrosine phosphorylation, resulting in upregulation of MUC5AC mRNA and protein production through downstream signaling of EGFR including the Akt/PI3K and Ras/MEK/MAPK cascade (33, 35, 41, 46). PPAR-γ is a member of the ligand-activated nuclear receptor superfamily. PPAR-γ has been shown to regulate differentiation and/or cell growth in many cell types. Moreover, PPAR-γ is also implicated in anti-inflammatory responses, but mechanisms underlying these varied roles remain ill-defined (23). Recently, reports show that upregulation of PTEN, with the concomitant downregulation of PI3K-dependent signaling pathways (19, 39, 50), might be one of the mechanisms through which PPAR-γ agonists exert their anti-inflammatory actions. However, no data are available on the role of PTEN and PPAR-
γ in mucin production.

In the present study, we investigated the effects of PPAR-γ agonist (rosiglitazone) on PTEN expression and smoke-induced mucin production in NCI-H292 cells.

Materials and Methods

Preparation of cigarette smoke solution. Standard research cigarettes (code 2R1, produced by the University of Kentucky Tobacco and Health Research Foundation) were used in this study. Cigarette smoke solution was prepared as described previously(46). In brief, cigarette smoke was withdrawn into a polypropylene syringe (50 ml) at a rate of one puff/min and bubbled slowly into 50 ml of RPMI 1640 medium containing 50 mM HEPES buffer. The smoke solution was then titrated to pH 7.4 and used immediately after preparation.

Cell culture. NCI-H292 cells, a human pulmonary mucoepidermoid carcinoma cell line, were grown in RPMI 1640 medium containing 10% fetal bovine serum, penicillin (100 U/ml), streptomycin (100 µg/ml), and HEPES (25 mM) at 37°C in a humidified 5% CO₂ water-jacketed incubator. Six-well culture plates were used to culture the cells. When confluent, cells were incubated for 1 h with cigarette smoke solution. The cells were then washed and incubated with fresh medium alone. Experiments were terminated at preselected times (for protein, 24 h). For the controls, cells were incubated with medium alone for the same time periods. In inhibition
studies, NCI-H292 cells were pretreated with wortmannin (20 nM; Sigma Aldrich, MO, USA), LY-294002 [2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one] (30 µM; Sigma Aldrich, MO, USA), tyrphostin AG-1478 (10 µM; Calbiochem, CA, USA), 30 min before the cigarette smoke solution was delivered. To evaluate the effect of PPAR-γ on smoke-induced mucin production, cells were pretreated with PPAR-γ agonist (rosiglitazone) 30 min before the cigarette smoke solution was delivered.

Measurement of TNFα. NCI-H292 cells were incubated with cigarette smoke solution or were treated in culture medium with various concentrations of rosiglitazone (0.1, 1 µM) 30 min before they were incubated in cigarette smoke solution. TNFα level was determined by ELISA (Sigma, MO, USA) from supernatants harvested at 24 hour.

Imunoassay of MUC5AC protein. NCI-H292 cells were incubated with cigarette smoke solution or were treated in culture medium with wortmannin, LY-294002, AG1478, rosiglitazone or TNFα monoclonal antibody (infliximab). Infliximab was purchased from a pharmaceutic supplier (Schering Korea Ltd., Seoul, Korea). MUC5AC protein was measured. In brief, cell culture supernatants were prepared with PBS at multiple dilutions, and 50 µL of each sample was then incubated with bicarbonate-carbonate buffer (50 µL) at 40°C in a 96-well plate (Maxisorp Nunc; Fisher Scientific, Santa Clara, CA, USA) until dry. The plates were then
rewashed three times with PBS and blocked with 2% bovine serum albumin, fraction V (Sigma Aldrich, MO, USA) for 1 h at room temperature. The plates were then rewashed three times with PBS and incubated with 50 µL of MUC5AC monoclonal antibodies (clone 45 M1, 1:100; NeoMarkers, Fremont, CA, USA) diluted with PBS containing 0.05% Tween 20. After 1 h, the wells were washed three times with PBS, and 100 µL of horseradish peroxidase-goat anti-mouse IgG conjugate (1:10,000) was dispensed into each well. After a further 1 h, the plates were washed three times with PBS. Color reaction was developed using 3,3',5,5'-tetramethylbenzidine peroxidase solution (Kirkegaard and Perry Laboratories, Gaithersburg, MD, USA) and stopped with 2 N H2SO4. Absorbance was read at 450 nm. Each experiment was repeated at least 5 times. Mucin of the submandibular gland was used as a positive ELISA control and naïve medium (RPMI+10% FBS, never exposed to cells) was used as a negative control.

Western blotting NCI-H292 cells were harvested and washed twice with PBS. The cell pellet lysed with MPER lysis buffer (mammalian protein extraction reagent, Pierce, Rockford, IL, USA) and 1:100 dilution of proteinase inhibitors (Pierce, Rockford, IL, USA). To remove insoluble materials, cell lysates were centrifuged at 14,000 rpm for 5 min, and 1 vol of Laemmli’s sample buffer (4% SDS, 20% glycerol, 10% 2-ME, 4mg/100ml bromophenol blue, and 125 mM Tris-HCl; pH 6.8, Bio-Rad Laboratories) was added to the supernatant. After
incubation at 95°C for 5 min, total proteins were separated by SDS-PAGE in 10% acrylamide gels. The running gel was electro-transferred to polyvinylidene difluoride membrane (Bio-Rad Laboratories), which was blocked with 5% fat-free skimmed milk in TBS/0.05% Tween 20 for 1 h at room temperature. Membrane incubated with anti-EGFR (Ab-2) monoclonal antibody (EGFR; 1:1000; 100µg/ml; Oncogene, CA, USA), anti-phospho-specific EGFR monoclonal antibodies (EGFR-p; 1:1000; 1 µg/ml; Calbiochem, CA, USA), anti-PTEN (1:800; Santa Cruz Biotechnology, Inc., CA, UAS), anti-pAkt(1:1000; Calbiochem, CA, USA). The membranes were stripped and reblotted with monoclonal anti-β-actin antibody (Sigma Aldrich, MO, USA) to verify equal loading of protein in each lane. The membrane incubated with HRP-linked secondary antibody (VECTOR, Burlingame, CA, USA) for 1 h at room temperature. Proteins were detected using the Supersignal West picochemiluminescent substrate kit (Pierce, Rockford, IL, USA) according to the manufacturer’s instructions.

Statistics. All data are expressed as means ± SE. One-way analysis of variance (ANOVA) was used to determine statistically significant differences between groups. Scheffé’s F-test was used to correct for multiple comparisons when statistical significances were identified in the ANOVA. P < 0.05 for the null hypothesis was accepted as indicating a statistically significant difference.
Results

Cigarette smoke induces EGFR tyrosine phosphorylation and MUC5AC protein synthesis.

Because the activation of EGFR leads to MUC5AC synthesis(45), we examined the effect of cigarette smoke solution on activation of the EGFR tyrosine kinase and AG 1478, a potent and selective chemical inhibitor of EGFR tyrosine kinase activity was used to block EGFR signal transduction. As expected, pretreatment (30 min) with cigarette smoke solution induced EGFR-specific tyrosine phosphorylation and AG1478 inhibited the cigarette smoke solution-induced increase of p-EGFR levels (Fig.1). The concentrations were determined from previous studies(47). NCI-H292 cells were treated with various doses of cigarette smoke. Cigarette smoke solution caused increase MUC5AC protein synthesis dose-dependently (Fig. 2).

Rosiglitazone inhibited cigarette smoke-induced TNFα production from NCI-H292 cells.

TNFα can induce EGFR expression, resulting in MUC5AC production as noted in previous studies(45). For the role of TNFα in cigarette smoke-induced mucin production, we used TNFα monoclonal antibody (infliximab) that selectively block the effects of TNFα and measured MUC5AC production. Cigarette smoke-induced MUC5AC protein synthesis was inhibited by infliximab, dose-dependently (Fig. 3). Therefore, we measured TNFα levels in cigarette smoke-stimulated NCI-H292 cells. NCI-H292 cells were treated with cigarette smoke solution and
Rosiglitazone. TNFα levels were measured in the culture supernatants of the cells. Cigarette smoke solution increased TNFα production in NCI-H292 cells, whereas rosiglitazone had an inhibitory effect on TNFα production in cigarette smoke-stimulated NCI-H292 cells, in a dose-dependent fashion (Fig. 4).

Effect of rosiglitazone, AG1478 and PI3K inhibitors on MUC5AC production in NCI-H292 cells. To test whether the cigarette smoke-induced MUC5AC production is related to the EGFR and Akt/PI3K pathway, cells were incubated with EGFR tyrosine kinase inhibitor, selective PI3K inhibitors (wartmannin, LY-294002) and rosiglitazone. Cigarette smoke-induced MUC5AC synthesis was inhibited by pretreatment with EGFR tyrosine kinase inhibitor and selective PI3K inhibitors. Furthermore, pretreatment of the cells with PPAR-γ agonist (rosiglitazone) prevented MUC5AC protein synthesis, in a dose-dependent fashion (Fig. 5). These results indicate that smoke-induced MUC5AC mucin production is related, at least in part, to the Akt/PI3K pathway.

Rosiglitazone increases PTEN expression with concomitant downregulation of pAkt expression.
Because rosiglitazone inhibited the MUC5AC mucin production, we examined whether inhibited mucin production is related to PTEN expression. PTEN, which antagonizes the action of PI3-kinase by dephosphorylation phosphatidylinositol 3,4,5-triphosphate (PIP3) has been suggested as a possible mechanism of anti-inflammatory action of PPAR-γ agonist (37).

Pretreatment of NCI-H292 cells with rosiglitazone increased PTEN expression which was reduced by cigarette smoke solution. We examined activated Akt (p-Akt), which cannot activate the subsignal pathway while under the PTEN activation state. Cigarette smoke-induced activated Akt expression was inhibited by pretreatment with rosiglitazone (fig. 6).
Discussion

Our study examined the effect of PPAR-\(\gamma\) agonist (rosiglitazone) on mucin production in airway epithelium by using NCI-H292 cells. Delivery of the rosiglitazone to cigarette smoke induced NCI-H292 cells decreased MUC5AC protein expression with increased PTEN expression. As a result of such increases in the expression of PTEN, the PI3-kinase/Akt pathway was inhibited and inhibition of Akt pathway abrogated MUC5AC mucin production. To our knowledge, this report is the first to describe this effect of rosiglitazone on cigarette smoke-induced mucin production.

Chronic bronchitis remains one of the most common chronic airway inflammatory diseases and is associated with epithelial metaplasia and mucus production. Various mediators, such as TGF-\(\beta\), GM-CSF, epidermal growth factor and TNF-\(\alpha\) have been reported to regulate airway inflammation. Exposure to cigarette smoke activates an inflammatory cascade in the airway epithelium resulting in the production of a number of potent cytokines and chemokines, with accompanying damage to the lung epithelium, increased permeability and recruitment of macrophages and neutrophils to the airway(1). Upregulation of cytokine gene expression in epithelial cells has been linked to the activation of specific signaling pathways. EGFR activation also plays a major role in modulating mucus production in airway epithelium. Takeyama et al reported that exposure to cigarette smoke upregulated EGFR mRNA expression and induced
EGFR-specific tyrosine phosphorylation, resulting in upregulation of MUC5AC mucin mRNA and protein production(46). EGFR activation may involve two pathways, namely, ligand dependent and ligand independent EGFR tyrosine phosphorylation(6). In ligand dependent EGFR tyrosine phosphorylation, EGFR ligands (EGF or TGF-α) bind to EGF receptors in the extracellular domain and activate them while, in ligand independent EGFR tyrosine phosphorylation, EGFR tyrosine phosphorylation occurs in the absence of exogenous EGFR ligands. Ligand independent EGFR phosphorylation is reported in response to oxidative stress that can be produced by cigarette smoke and by activated neutrophils(20, 44, 46). Upon activation, these receptors undergo dimerization and tyrosine autophosphorylation, followed by recruitment and activation of signaling molecules that contain the mitogen activating kinase (MAPK) and Akt, resulting in airway epithelial proliferation and mucus hypersecretion(3, 6, 48). Previous studies reported that the MAPK pathway is mainly involved in mucin production induced by a variety of stimuli(15). However, in recent years, a second pathway, downstream of PI3K and Akt, has become a focus of interest(3, 48). The activated PI3K converts the plasma membrane lipid phosphatidylinositol-4,5-biphosphate [PI(4,5)P₂] to phosphatidylinositol-3,4,5-triphosphate [PI(3,4,5)P₃](9). This phosphorylation then stimulates the catalytic activity of Akt. Active Akt phosphorylates IκB kinase-α (IKKα), which promotes activation of its heterodimeric partner, IKKβ, in IKKα/IKKβ complex(25, 36). The IKK complex phosphorylates IκB, thereby
promoting its dissociation from NF-κB(5). This process allows NF-κB to enter the nucleus, where it activates cytokines, adhesion molecules and other target genes(10). NF-κB has been shown to play an important role in mucus production(11, 31). Thus, PI3K/Akt signaling may render cells produce mucin. In the present study, our results show that exposure of airway epithelial cells to cigarette smoke activates EGFR tyrosine phosphorylation, causing MUC5AC mucin synthesis in NCI-H292 cells (Fig. 1,2). The Akt phosphorylation is increased while the PTEN protein expression is reduced, and Akt pathway inhibitor LY294002 suppressed MUC5AC production in cigarette smoke solution treated NCI-H292 cells.

Peroxisome proliferators-activated receptors (PPARs) have been reported to regulate inflammatory responses(13). Three subtypes of PPARs (α, β, and γ) have been identified(16). One of the natural ligands for PPAR-γ is 15-deoxy-Δ-prostaglandin J₂, the major metabolite of prostaglandin D₂(17). Ligand-induced activation of PPAR results in heterodimerization of the receptor with the retinoid X receptor (RXR) and subsequent binding to specific peroxisome proliferators-responsive elements located within the promoter region of target genes(27). PPAR-γ has been shown to play a major role in regulating adipocyte differentiation and glucose homeostasis. One group of synthetic PPAR-γ agonistic ligands is rosiglitazone, a group of drugs used in the treatment of diabetic patients(49). In addition, there is a growing body of evidence that suggests that PPAR-γ agonists may exert anti-inflammatory action in vivo(2, 30, 34) and
some reports have demonstrated that ligand-activated PPAR-γ can down-regulate NF-kB transcription(12, 38). Therefore, inhibition of NF-kB activation by PPAR-γ agonist may well reduced expression of pro-inflammatory mediators (TNFα, ICAM-1, etc.). A possible clue to the mechanism of PPAR-γ anti-inflammatory action has been provided by the observation that expression of PTEN, which antagonizes PI3K mediated signaling, is directly upregulated by PPAR-γ(37). PPAR-γ is able to bind two PPAR response elements (PPRE) in genomic sequence upstream of PTEN and antisense-mediated disruption of PPAR-γ expression prevented the upregulation of PTEN. The PTEN gene constitutes a novel candidate tumor suppressor located on chromosomal band 10q23.3 and exists as a 55-kDa protein comprising N-terminal catalytic domain and a dual specificity phosphatase(32). It is known that PTEN plays critical roles not only in suppressing cancer but also in embryonic development, cell migration, cell signaling, and apoptosis(4, 14, 21, 43). PTEN appears to serve as a hub or switch point that links complex signaling pathways. Expression of PTEN has opposite effects, such as blocking downstream signaling of EGFR including the Ras/MEK/MAPK cascade and PI3K/Akt signaling(21, 22, 28, 51). The activation of PTEN function results in a decrease of PIP3 concentration, which in turn leads to Akt inactivation. This would appear to suggest that the anti-inflammatory function of PTEN is exerted through the negative regulation of the PI3K/Akt cell signaling pathway(43).

Our results show that administration of rosiglitazone results in increase of PTEN expression.
The Akt phosphorylation that is increased by cigarette smoking solution, is significantly reduced by the administration of the rosiglitazone. Taken together, these findings suggest that PPAR-γ agonist may reduce smoking solution induced MUC5AC synthesis by increasing PTEN expression.

In conclusion, our study of cigarette smoke-induced airway epithelial cells, exposed to the administration of PPAR-γ agonist, decreased inflammatory cytokine (TNF-α) and MUC5AC mucin synthesis were observed, which was shown to be associated with the inhibition of PI3K/Akt pathway (Fig. 7). These findings thus represent the first evidence for a PPAR-γ dependent and therapeutically significant inhibition of cigarette smoke-induced mucin production. Therefore, activation of PTEN, and inhibition of PI3K/Akt by PPAR-γ agonist, is proposed as a potential therapy for cigarette smoke induced mucin secretory diseases. Most patients with COPD have mucus hypersecretion. Overproduced mucus plugs the airways and contributes to exacerbations of COPD. Presently, there is no effective therapy to relieve the symptoms and to halt the progression of this disease. Our results provide a strategy for therapy by recovery of PTEN expression.

Grant

This work was supported by the Korea Research Foundation Grant (KRF-2004-041-E00145)
Fig. 1

p-EGFR

EGFR

control Smoke (9 puffs) AG1478

Fig. 2

MUC5AC protein (% above control)

<table>
<thead>
<tr>
<th>Cigarette smoke (puffs)</th>
<th>100</th>
<th>120</th>
<th>140</th>
<th>160</th>
<th>180</th>
</tr>
</thead>
<tbody>
<tr>
<td>control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>**</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* indicates statistical significance compared to control.
Fig. 5

![Graph showing MUC5AC protein levels after treatment with various compounds.

Fig. 6

Western Blot Analysis

- **PTEN**
- **pAkt**
- **β-actin**

<table>
<thead>
<tr>
<th>Smoke(9 puffs)</th>
<th>PTEN</th>
<th>pAkt</th>
<th>β-actin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rosiglitazone (mg/ml)</th>
<th>0</th>
<th>0</th>
<th>0.1</th>
<th>1</th>
</tr>
</thead>
</table>
Fig. 7
Legends

Fig. 1 Tyrosine phosphorylation of EGFR induced by cigarette smoke was inhibited by EGFR tyrosine kinase inhibitor (AG1478). The cells were pretreated with or without AG1478 (10 μM) for 30 min and then treated with vehicle or cigarette smoke solution for 1 h. After lysis, EGFR was immunoprecipitated with antiphosphorylated EGFR antibody (top) and with anti-EGFR antibody (bottom). EGFR expression was not significantly different for the different lysates, thus indicating equal protein loading.

Fig. 2 Effects of cigarette smoke solution on MUC5AC production in NCI-H292 cells.

Cigarette smoke was withdrawn into a polypropylene syringe (50 ml) at a rate of one puff/min and then bubbled slowly into RPMI 1640 medium containing 50 mM HEPES buffer. Cells were incubated for 1 h in cigarettes smoke solutions. They were then washed and incubated with fresh medium alone. MUC5AC levels were determined in the supernatants harvested after 24 h by ELISA. MUC5AC protein was calculated as percentage with respect to control. Cigarette smoke solution increased MUC5AC production dose-dependently (n=5, *P<0.05, **P<0.01 compared with control).

Fig. 3 Effects of TNFα inhibitor (infliximab) on cigarette smoking solution induced MUC5AC production in NCI-H292 cells. The cells were pretreated with or without infliximab
for 30 min and then treated with cigarette smoke solution for 1 h. MUC5AC levels were determined in the supernatants harvested after 24 h by ELISA. MUC5AC protein was calculated as percentage with respect to control. Cigarette smoke solution induced MUC5AC protein synthesis was inhibited by TNFα monoclonal antibody (infliximab), dose-dependently. (n=5, *P<0.05, **P<0.01 compared with 9 puffs of cigarette smoke solution alone).

Fig. 4 Cigarette smoke-induced TNFα secretion was inhibited by rosiglitazone dose-dependently in NCI-H292 cells. The cells were pretreated with or without rosiglitazone (0.1 µM/1 µM) for 30 min and then stimulated with vehicle or cigarette smoke solution for 1 h. Data are detected by ELISA and expressed as mean values ± S.E. (n=5, *P<0.01 compared with control, **P<0.05, †P<0.01 compared with 9 puffs of cigarette smoke solution alone).

Fig. 5 Effects of Akt inhibitor, EGFR inhibitor or rosiglitazone on cigarette smoking solution induced MUC5AC production in NCI-H292 cells. The cells were pretreated with wortmannin (20 nM), LY-294002 (30 µM), AG-1478 (10 µM), 30 min before the cigarette smoke solution was delivered and then stimulated with vehicle or cigarette smoke solution for 1 h. MUC5AC levels were determined in the supernatants harvested after 24 h by ELISA. MUC5AC protein was calculated as percentage with respect to control. (n=5, *P<0.05 compared with cigarette smoke alone, †P<0.05 compared with rosiglitazone 0.1 µM).
Fig. 6 Effects of smoking and rosiglitazone on the expression of PTEN and pAkt in NCI-H292 cells. The cells were pretreated with or without rosiglitazone (0.1 µM/ 1 µM) for 30 min and then stimulated with vehicle or cigarette smoke solution for 1 h. Western blot analysis for PTEN and pAkt were measured at 24 h after smoking solution treatment. Sample loading was normalized using a probe for beta-actin. Cigarette smoke solution downregulated PTEN expression with concomitant upregulation of pAkt signaling. But, Rosiglitazone upregulated PTEN expression with concomitant downregulation of pAkt signaling. Data shown are representative of two independent experiments/treatments.

Fig. 7 Model for the inhibition of MUC5AC by rosiglitazone. This model combines others’ previous results on mechanisms responsible for the ability of smoke to activate EGFR with the present results showing mechanisms responsible for MUC5AC inhibition. TNF serves as an initial stimulus, which results in transactivation of EGFR, through mechanisms that are dependent on TACE induced shedding of EGFR ligands(TGFα). Active ligands may be released by cleavage of membrane anchored proligand (exemplified by proTGFα). Binding of EGFR ligands in the extracellular domain in airway epithelial cells is followed by phosphorylation of tyrosine residues in the intracellular domain. Activated EGFR triggers a downstream cascade leading to mucin gene and protein synthesis. Rosiglitazone inhibits TNF-α and forms a heterodimer with RXR and PPAR-γ receptor. This heterodimer bind PPAR response elements in genomic sequence upstream of PTEN, and PTEN expression is upregulated. The activation of PTEN results in a decrease of PIP3 concentration, which in turn leads to Akt pathway inactivation. Key: TNFR = tumor necrosis factor receptor; TACE = tumor necrosis factor-α-converting enzyme; TGFα = transforming growth factor α ; RXR = retinoid X receptor.

38. Ricote M, Li AC, Willson TM, Kelly CJ, and Glass CK. The peroxisome proliferator-

