Pulmonary artery smooth muscle cell endothelin-1 expression modulates the pulmonary vascular response to chronic hypoxia

Francis Y. Kim, M.D.
Elizabeth A. Barnes, Ph.D.
Lihua Ying, Ph.D.
Chihhsin Chen, M.S.
Lori Lee, Ph.D.
Cristina M. Alvira, M.D.
David N. Cornfield, M.D.

Center for Excellence in Pulmonary Biology, Divisions of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University Medical School, Stanford, CA

Short Title: PASMC ET-1 modulates vascular tone

Corresponding author:

Address: David N. Cornfield, M.D.
Center for Excellence in Pulmonary Biology
Divisions of Pediatric Pulmonary, Asthma and Sleep Medicine
Stanford University Medical School Medicine
770 Welch Road
Stanford, CA 94304

Phone: (650)-723-8325
FAX: (650)-498-5560
email: cornfield@stanford.edu

WORD COUNT - BODY: 3787

WORD COUNT - ABSTRACT: 275
Abstract

Endothelin-1 (ET-1) increases pulmonary vascular tone through direct effects on pulmonary artery smooth muscle cells (PASMC) via membrane bound ET-1 receptors. Circulating ET-1 contributes to vascular remodeling by promoting SMC proliferation, migration, and inhibiting SMC apoptosis. While endothelial cells (EC) are the primary source of ET-1, whether ET-1 produced by SMC modulates pulmonary vascular tone is unknown. Using transgenic mice created by crossbreeding SM22α-Cre mice with ET-1^{flox/flox} mice to selectively delete ET-1 in SMC, we tested the hypothesis that PASMC ET-1 gene expression modulates the pulmonary vascular response to hypoxia. ET-1 gene deletion and selective activity of SM22α promoter driven Cre recombinase were confirmed. Functional assays were performed under normoxic (21% O₂) or hypoxic (5% O₂) conditions using murine PASMC (mPASMC) obtained from ET-1^{+/+} and ET-1^{−/−} mice, and in human PASMC (hPASMC) after silencing of ET-1 using siRNA. Under baseline conditions, there was no difference in right ventricular systolic pressure (RVSP) between SM22α-ET-1^{−/−} and SM22α-ET-1^{+/+} (control) littermates. After exposure to hypoxia (10% O₂, 21-24 days), RVSP was and vascular remodeling were less in SM22α-ET-1^{−/−} mice compared to control littermates (p<0.01). Loss of ET-1 decreased PASMC proliferation, migration and increased apoptosis under normoxic and hypoxic conditions. Exposure to selective ET-1 receptor antagonists had no effect on either the hypoxia-induced hPASMC proliferative or migratory response. SMC specific ET-1 deletion attenuates hypoxia-induced increases in pulmonary vascular tone and structural remodeling. The observation
that loss of ET-1 inhibited SMC proliferation, survival and migration, represents
evidence that ET-1 derived from SMC plays a previously undescribed role in
modulating the response of the pulmonary circulation to hypoxia. Thus, PASMC
ET-1 may modulate vascular tone independently of ET-1 produced by EC.
Introduction

At all points in organismal development and life, control of pulmonary vascular tone is of critical importance. During fetal life, normal lung development requires closely circumscribed pulmonary flow while pulmonary vascular resistance (PVR) exceeds systemic vascular resistance. With the onset of air-breathing life, PVR must decrease abruptly to accommodate the increase in pulmonary blood flow that enables gas exchange (3, 4). Early in postnatal life, PVR decreases still further to 20% of systemic vascular resistance, where, under normal conditions (6), it remains throughout the remainder of air-breathing life.

However, in a number of pathologic states, pulmonary arterial pressure is increased, leading to profoundly untoward consequences. For example, in the perinatal period, pulmonary vasodilation is biologically imperative. If PVR does not decrease with the onset of air-breathing life, persistent pulmonary hypertension of the newborn (PPHN) results a substantial cause of neonatal morbidity and mortality (25). During air-breathing life, increases in pulmonary vascular tone possess even more profound untoward consequences.

Pulmonary arterial hypertension (PAH) is a syndrome wherein pulmonary arterial obstruction increases pulmonary vascular resistance resulting in right ventricular heart failure. Despite the advent of new biologic-based therapies and increased insight into the pathobiology of primary pulmonary hypertension, the actuarial survival of patients has demonstrated only modest improvement, as 50% of all people with primary PAH die within 7 years of diagnosis (1). No effective preventative or curative treatments are available. When PAH is superimposed upon
diseases such as bronchopulmonary dyplasia (BPD), a chronic lung disease of infancy (26), congenital heart disease, cystic fibrosis, or rheumatologic disease (16), the prognosis is dramatically worsened (13). Thus, the need to generate new knowledge that might be translated into a therapeutic tool has never been more palpable.

Pulmonary artery smooth muscle cells (PASMC) have the capacity to sense and respond directly to hypoxia (5, 21) and thereby modulate pulmonary vascular tone. In the context of pulmonary hypertension, hypoxia can cause vascular remodeling which entails PASMC proliferation and migration (28). Molecules produced by pulmonary artery endothelial cells (EC) modulate vascular tone by direct effects on PASMC. Nitric oxide, for example, activates guanylate cyclase and increases cytosolic cyclic GMP concentration, resulting in vasodilation (7, 11, 24).

Endothelin (ET-1), a 21-amino acid polypeptide produced primarily by EC possesses complex effects. ET-1 binds to specific receptors on PASMC to cause an increase in $[\text{Ca}^{2+}]_i$ and vasoconstriction (40). In many pathologic states, including PAH (36), ET-1 production is increased, leading to an increase in vascular tone, smooth muscle cell (SMC) proliferation, migration and survival (14, 23, 41).

The importance of ET-1 in the pathobiology of PAH (31, 32) provided sound therapeutic rationale for the development of specific ET-1 receptor antagonists. While ET-1 receptor antagonists are widely used clinically, the therapeutic efficacy has been limited (19). Given the observation that SMC can
produce ET-1 (10, 29), we sought to determine whether ET-1 produced by SMC
might function in an autocrine manner and thereby contribute to the pathology of
PAH independent of ET-1 receptor activation (37, 38). Thus, to test the
hypothesis that ET-1 produced by PASMC modulates the PAH response to
chronic hypoxia, we generated mice with a SMC-specific deletion of ET-1.

Methods

Generation of SM22α-ET-1-/- Mice

Transgenic mice with selective deletion of ET-1 (SM22α-ET-1-/- mice) in
SMC were created by cross breeding SM22α-promotor-driven Cre mice
expressing the Cre reporter gene ROSA26-R (kindly provided by Marlene
Rabinovitch, MD, Stanford University) with ET-1floxflox mice (kindly provided by Dr.
Masashi Yanagisawa, MD, UT Southwestern). ET-1 homozygous floxed mice
contain the ET-1 exon 2 flanked by LoxP sites as previously described (20). The
Institutional Animal Care and Use Committee at Stanford University approved all
the procedures and protocols governing the care and use of laboratory animals.

To identify the cre gene, primers (forward: 5’-
CCGGTTATTCAACTTGCACC-3’; reverse: 5’-
CTGCATTACCGGTCGATGCAAC-3’) were used to generate a 149bp PCR
product (34). To identify the Cre reporter gene, ROSA26-R, primers (Jackson
Laboratories protocol: Gt (ROSA) 26Sortm1sor STD, forward: 5’-
AAAGTCGCTCTGAGTTGTTAT-3’; mutant reverse: 5’-
GCGAAGAGTTTGTCTCAACC-3’; wild-type (WT) reverse: 5’-
GGAGCGGGAGAAATGGATATG-3') were used to amplify a 340bp fragment from mutant and a 550bp fragment from control mice. To identify the WT ET-1 gene (edn1), primers (WT forward: 5'-GCTGCCAAAGATTCTGAATTCTG-3'; mutant forward: 5'-CCCAAAGATTCTGAATTGATACTTCG-3'; reverse: 5'-GATGATGTCAGGTGGCAG AAG-3') were used to amplify a 900bp fragment from mutant (ET-1^flox/flox) and a 900bp fragment from control mice.

X-Gal Staining of Pulmonary Tissues

To identify SM22α-promoter driven Cre recombinase activity, pulmonary tissues were inflated with optimum cutting temperature (OCT) compound and then stored in OCT at -80°C. Frozen tissues were sectioned, incubated for 15min in 0.2% glutaraldehyde on ice, stained with 1mg/ml X-gal (β-Galactosidase Reporter Gene Staining Kit, Sigma-Aldrich) for 3h at 37°C, and then fixed in 10% formalin solution for 10min.

Primary Mouse PASMC Isolation

Primary mouse pulmonary artery smooth muscle cells (mPASMC) were isolated from control (Cre-ET-1^flox/flox) and SM22α-ET-1^-/- mice using a modified elastase/collagenase digestion protocol (18). PA tissue was digested in dispersion medium containing 40µmol/L CaCl₂, 0.5mg/ml elastase (Worthington Biochemical), 0.5mg/mL collagenase (Worthington Biochemical), 0.2mg/mL soybean trypsin inhibitor (Worthington Biochemical), and 2mg/mL albumin (Sigma-Aldrich) for 20min at 37°C. After filtration with 100µm cell strainers, cells
were incubated with Dynabeads® (Invitrogen) coated with CD31 antibody (BD Biosciences) for 20 min, in order to deplete endothelial cells expressing CD31. Remaining SMC were collected through centrifugation at 225 g for 5 min at 4°C and cultured in DMEM containing 5% FBS, 1% L-glutamine, and 1% antibiotic-antimycotic solution (Invitrogen/Gibco). To confirm isolation of PASMC, cells were stained for α-SMA (1:400, Sigma) using immunofluorescence technique.

Immunocytochemistry

mPASMC isolated from control and SM22α-ET1⁻/⁻ mice were fixed in 3% para-formaldehyde in PBS for 30 min, blocked and permeabilized in blocking solution (0.1% Triton-X100, 15 g/mL glycine, 2.5% FBS in PBS) for 1 h, then incubated with ET-1 antibody (1:200, Abcam) for 1 h. Cells were then incubated with Alexa Fluor 488 Phalloidin (1:40, Invitrogen/Molecular Probes) and goat α-rabbit Alexa Fluor 568 (1:200, Invitrogen/Molecular Probes) for 30 min, followed by mounting in Vectashield Mounting Medium with DAPI (Vector Laboratories).

Quantitative RT-PCR

To assay for ET-1 mRNA expression, total RNA was isolated from cultured mPASMC exposed to 24 h hypoxia (5% O₂) using the RNeasy Mini Kit (Qiagen). First strand cDNA was synthesized using SuperScript III Reverse Transcriptase (Life Technologies) and subsequently amplified on the C1000 Thermal Cycler CFX 384 Real-Time System (Bio-Rad) using RT² SYBR Green qPCR Mastermix (Qiagen). Primer sets are as follows, ET-1 forward: 5'−
GTGTCTACTTCTGCCACCTGGACAT-3’ and ET-1 reverse: 5’-
GGGCTCGCACTATATAAGGGATGAC-3’; GAPDH forward: 5’-
TGCACCACCAACTGCTTAG-3’ and GAPDH reverse: 5’-
GGATGCAGGGATGATGT TC-3’. Quantitative RT-PCR was performed using the following cycle: 95°C for 10min, 40 cycles of 95°C for 15s and 60°C for 60s, 60°C for 5min followed by a dissociation curve analysis. mRNA expression levels were analyzed using the delta-delta C T method.

ET-1 ELISA

Production of secreted ET-1 was determined by measuring ET-1 levels with a colorimetric immunometric enzyme immunoassay (ELISA) kit (Enzo), according to the manufacturer’s protocol. Briefly, media from transfected hPASMC (siNTC and siET-1) and serum from control and SM22α-ET-1-/- mice were plated in duplicate and incubated for 1h at room temperature. To measure ET-1 protein production in mPASMC isolated from control and SM22α-ET-1-/- mice, cultured mPASMC (ET-1+/+ and ET-1-/-) were exposed to hypoxia (5% O₂) for 24h, then harvested and lysed. Cell lysate samples were normalized to cell number (representing 250,000 cells/well), plated in duplicate, and incubated for 24h at 4°C. Optical density was measured at 450nm, with the concentration of ET-1 in samples calculated from a standard curve of recombinant ET-1.

Hemodynamic Assessments
Adult littermates were used in each group. To measure pulmonary arterial pressures, mice were anesthetized with 1.5-2.0% isofluorane and right ventricular systolic pressure (RVSP) measurements were obtained using a 1.4F Millar catheter (Millar Instruments) at baseline (normoxia, 21% O₂) and after exposure to chronic hypoxia (10% O₂, 3 weeks) as previously described (17). Left ventricular (LV) fractional shortening, ejection fraction, aortic valve velocity time integral (VTI), and heart rate were evaluated by echocardiography using the GE Vivid 7 ultrasound machine with a 13MHz probe (GE Healthcare). Blood was collected by direct heart venipuncture and assayed for hemoglobin and hematocrit levels. Fulton’s index was determined in both experimental groups after hypoxic exposure.

Morphometric Analysis

Assessment of PA muscularization was performed on formalin-fixed and paraffin-embedded lung sections from mice exposed to chronic hypoxia using Movat pentachrome stain. Peripheral PA wall thickness was assessed by measuring Movat stained vessels less than 100µm in diameter in 10 fields/mouse at 400x magnification using Metamorph software, and then compared between the two genotypes using the following equation: Medial thickness index = [(area_{ext} – area_{int}) / area_{ext}], where area_{ext} and area_{int} represent the areas within the external and internal boundaries of the elastic fibers as detected by Movat stain (8). To quantitate the number of distal pulmonary arteries, mean vessel density (number of barium-filled distal arteries less than 50µm in diameter per 100 alveoli)
was assessed on barium-injected lungs from mice exposed to chronic hypoxia using H&E stain with 6 fields/mouse counted at 400x magnification.

Cell Culture

In vitro studies were performed with human pulmonary artery smooth muscle cells (hPASMC) and murine PASMC (mPASMC) isolated from control and transgenic mice with selective deletion of ET-1 in SMC (SM22α-ET-1−/−). The hPASMC were purchased from Lonza and grown according to the manufacturer’s protocol. Cells from passages 3-8 were used for all experiments.

Immunohistochemistry

Formalin-fixed and paraffin-embedded lung sections from mice exposed to chronic hypoxia were deparaffinized and rehydrated, incubated with Universal Antigen Retrieval Reagent (R&D Systems) for 30min at 95°C, permeabilized with 0.25% Triton-X100 in PBS solution for 30 minutes, incubated with 100mM glycine solution (pH 7.5) for 20min to quench autofluorescence, blocked with Sea Block Blocking Solution (Thermo Scientific) for 30min, blocked with Mouse Detective Reagent (Biocare Medical) for 30min to block endogenous mouse IgG, incubated with PCNA (1:150, Abcam) and α-SMA (1:400, Sigma) antibodies overnight at 4°C. Sections were then incubated with goat anti-rabbit Alexa Fluor 488 and goat anti-mouse Alexa Fluor 568 (1:200, Invitrogen/Molecular Probes) for 1 hour, followed by incubation with 1µg/mL Hoechst solution (Sigma) to visualize nuclei. The relative number of proliferating
SMC was assessed as a percent of total SMC in pulmonary arteries greater than 100µ and less than 250µ in diameter following exposure to chronic hypoxia.

siRNA Transfection

hPASMC, at 50-70% confluency, were transfected using Lipofectamine RNAiMAX (Invitrogen) according to the manufacturer’s protocol. Briefly, siRNA specific for human ET-1, siET-1 (Thermo Scientific Dharmacon), or scrambled non-targeted control siRNA, siNTC (Thermo Scientific Dharmacon) was transfected at a final concentration of 50nM. 24h post-transfection, cells were re-fed with fresh media. After an additional 24 hours, the cells were trypsinized and used for cell proliferation, apoptosis, and cell migration studies.

Cell Proliferation Assays

SMC proliferation was determined by measuring DNA synthesis with a colorimetric bromodeoxyuridine (BrdU) enzyme-linked immunosorbent assay (ELISA) kit (Roche Diagnostics), according to the manufacturer’s protocol. Briefly, transfected hPASMC (siET-1 and siNTC) and mPASMC (control and ET-1^-/-) were seeded in triplicate in a 96-well plate (4000 cells/well) and incubated in starvation media (0.2% FBS) overnight. Cells were then incubated with BrdU labeling reagent under normoxic (21% O_2) or hypoxic conditions (5% O_2) for 24h in complete media. Cells were fixed and then incubated with BrdU antibody for 90min. After washing with PBS, cells were incubated with tetramethylbenzidine for 10min. Incorporation of BrdU was detected at absorbance 370nm.
For the assays using ETA and ETB receptor antagonists, hPASMC proliferation was determined as described above with the following exception: 7.5µM BQ123 (ETA inhibitor) and 0.1µM BQ788 (ETB inhibitor) were added 30min prior to the addition of the BrdU labeling reagent.

Apoptosis Assays

SMC apoptosis was determined by measuring caspase 3/7 activities using the Caspase-Glo® 3/7 Assay (Promega) according to the manufacturer’s protocol. Briefly, 3500 cells/well were seeded in triplicate in a 96-well plate and incubated overnight. Cells were then exposed to normoxia (21% O₂) or hypoxia (5% O₂) for 24h in starvation media (0.1% FBS). Caspase 3/7 activities were measured using a GloMax 96-well plate luminometer after the addition of Caspase Glo® 3/7 Reagent. As a control for the induction of apoptosis, cells were treated with 0.5mM H₂O₂ solution.

For the assays using ETA and ETB receptor antagonists, hPASMC apoptosis was determined as described above with the following exception: 7.5µM BQ123 (ETA inhibitor) and 0.1µM QB788 (ETB inhibitor) were added 30min prior to exposure to normoxia or hypoxia for 24h.

Cell Migration Assays

SMC migration was determined by using a modified Boyden Chamber assay (BD BioCoat™ Matrigel™ Invasion Chamber, BD Biosciences). Briefly, Matrigel inserts were rehydrated with media at 37°C for 2h prior to use. Media (±
10ng/mL PDGF-BB) was added to each well of a 24-well companion plate. Transfected hPASMC (siET-1 and siNTC) and mPASMC (ET-1+/+ and ET-1−/−) were seeded (20,000 cells/well) in duplicate in the top chamber (Matrigel insert). After 24h of incubation, the non-migrated cells in the top chamber were carefully removed, and the migrated cells on the lower surface of the membrane were fixed and stained with Diff-Quik kit reagents (Polysciences).

For the assays using ETA and ETB receptor antagonists, hPASMC cell migration was determined as described above with the following exception: 7.5µM BQ123 (ETA inhibitor) and 0.1µM BQ788 (ETB inhibitor) were added to the top chamber prior to exposure to either normoxia or hypoxia for 24h.

Statistical Analysis

Results are expressed as means ± SEM. Statistical significance was assessed with Student’s t-test and ANOVA where appropriate. A p-value of < 0.05 was taken as the threshold level for statistical significance. All experiments were repeated a minimum of three times unless stated otherwise.

Results

Characterization of SM22α-ET-1−/− mice

Cre recombinase activity and edn1 gene expression in SM22α-ET-1−/− mice was demonstrated using PCR (Figure 1A). Lung tissues from SM22α-ET-1 mice were stained with X-gal to demonstrate SM22α-promoter driven Cre recombinase activity in SMC. As shown in Figure 1B, β-gal expression was
present in the pulmonary arteries of SM22α-ET-1−/− mice (right panel). In contrast, β-gal expression was undetectable in lung tissues from SM22α-ET-1+/+ mice (control, left panel). Both ET-1 mRNA and protein were significantly decreased in PASMC isolated from SM22α-ET-1−/− mice compared to control mice (Figures 1C and 1D). These results confirm the absence of ET-1 in SM22α expressing cells in the present murine model. Even under hypoxic conditions, ET-1 expression is minimal.

Loss of ET-1 in SMC attenuates the pulmonary vascular response to chronic hypoxia.

To characterize the role of PASMC ET-1 production on the pulmonary vascular response to hypoxia, control and SM22α-ET-1−/− mice were evaluated after hypoxic exposure. At baseline, under normoxic conditions, RVSP was 26.9±1.4 mmHg in control and 25.0±1.2 mmHg in SM22α-ET-1−/− mice. After 3 weeks of hypoxia (10% O2), right RVSP was 41.5±1.2 mmHg in control mice as compared to 35.8±1.3 mmHg in SM22α-ET-1−/− mice (Figures 2A and 2B; p<0.01 vs. control). Fulton’s index was determined as the ratio of right ventricular weight to left ventricle and septal weight. (Figure 2C). Compared to control mice, peripheral pulmonary artery muscularization was significantly decreased and the ratio of arteries to alveoli was more well preserved in SM22α-ET-1−/− mice (Figures 2D and 2E). Both groups demonstrated similar increases in hematocrit and heart rate, decreases in body weight, and well preserved cardiac function after hypoxic exposure (Table 1). After chronic hypoxia, serum ET-1 levels
increased similarly in control and SM22α-ET-1−/− mice, supporting the notion that ET-1 production from endothelial cells is the major contributor to circulating ET-1 levels as opposed to ET-1 derived from SMC (Figure 2F).

In both experimental groups, hemoglobin increased after hypoxic exposure. LV function was preserved in both groups after hypoxia. After hypoxia, Fulton’s index did not differ between experimental groups (Figure 2C).

ET-1 depletion inhibits the hypoxia-induced proliferation in PASMC

To gain insight into the mechanism by which SMC-derived ET-1 may mitigate the pulmonary vascular response to hypoxia, we considered whether ET-1 plays a role in SMC proliferation. Using PASMC isolated from SM22α-ET-1−/− and control mice, we compared proliferation in ET-1+/+ and ET-1−/− PASMC under normoxic and hypoxic conditions. Under normoxic conditions, loss of ET-1 decreased the rate of PASMC proliferation (Figure 3A). Furthermore, the hypoxia-induced increase in SMC proliferation was significantly attenuated in ET−/− PASMC as compared to ET+/* PASMC. To demonstrate fidelity between *in vitro* and *in vivo* findings, we performed PCNA staining on lung tissues. After chronic hypoxia, the percentage of proliferating PASMC was decreased in SM22α-ET-1−/− compared to control mice (Figure 3B).

To buttress the relevance of the findings from the murine model to human biology hPASMC ET-1 was silenced in hPASMC using siRNA. As shown in Figure 3C, ET-1 production was significantly diminished in siET-1 transfected cells (86% less than non-targeted control siRNA, siNTC). Consistent with the cell
proliferation results from mPASMC, loss of ET-1 decreased proliferation of hPASMC under basal conditions, and attenuated the hypoxia-induced proliferative response (Figure 3D).

ET-1 depletion increases apoptosis in PASMC

To determine whether SMC derived ET-1 plays a role in cell survival as well as cell proliferation, we measured the caspase 3/7 activities of in ET-/- PASMC. As shown in Figure 4A, the loss of ET-1 in mPASMC resulted in a significant increase in apoptosis compared to ET-1+/+ SMC under both normoxic and hypoxic conditions. Similarly, knockdown of ET-1 using siRNA in hPASMC resulted in a significant increase in apoptosis compared to siNTC-transfected SMC (Figure 4B). These results demonstrate that the loss of SMC-derived ET-1 promotes PASMC apoptosis and suggest that SMC-derived ET-1 contributes to PA remodeling in response to hypoxia by promoting SMC survival.

ET-1 depletion inhibits SMC migration in PASMC

To determine the role of SMC-produced ET-1 in SMC migration, we assessed the effects of ET-1 expression on SMC migration using a modified Boyden chamber assay. Migration was diminished in ET-1-/- mPASMC compared to ET-1+/+ cells under both normoxic and hypoxic conditions (Figure 5A). Cell migration was similarly diminished in hPASMC transfected with siET-1, compared to siNTC cells (Figure 5B). Interestingly, even with PDGF-BB
stimulation, a pro-migratory stimulus for SMC (9, 15), SMC migration was attenuated in ET-1 depleted SMC compared to control cells.

Inhibition of ET-1 receptors does not alter SMC proliferation, apoptosis or migration

To determine whether the pro-proliferative effect of SMC ET-1 was contingent upon binding to either the endothelin A (ETA) or endothelin B (ETB) receptors, cell proliferation assays were performed in the presence and absence of specific ET-1 receptor antagonists. Neither BQ123, a specific ETA receptor antagonist, nor BQ788, a specific ETB receptor antagonist (2, 12), had an effect on SMC proliferation under normoxia. Moreover, the hypoxia-induced SMC proliferative response was unaffected by either receptor antagonist (Figure 6A). To further assess the functional role of SMC ET-1, assays for apoptosis (Figure 6B) and cell migration (Figure 6C) were performed in the presence and absence of selective ETA or ETB receptor antagonism. Pharmacologic antagonism of either receptor had no effect on either apoptosis or proliferation.

Discussion

The present series of experiments provides evidence for a previously undescribed role for smooth muscle derived ET-1 in the pathogenesis of PAH. Compared to controls, RVSP in SM22α-ET-1^{−/−} mice was similar under normoxic conditions, but significantly lower after chronic hypoxia. Consistent with these findings, after chronic hypoxia vascularity was more well preserved, and
muscularization diminished in SM22α-ET-1−/− mice. To address the potential physiologic underpinnings, we evaluated the effect of ET-1 depletion on SMC proliferation, apoptosis and migration. Loss of ET-1 in SMC compromised both cell survival and migration, suggesting that SMC ET-1 might contribute to pulmonary vascular remodeling by augmenting proliferation and migration, while mitigating apoptosis. Finally, by demonstrating that SMC proliferation, in both hypoxia and normoxia, was not altered by ET-1 receptor blockade, we provide evidence that SMC derived ET-1 may act independently of ET-1 receptor activation. This observation may, in part, account for the limited therapeutic benefit of ET-1 receptor blockade in the context of PAH characterized by minimal vascular reactivity and structural remodeling (22).

While ET-1 production by SMC has been previously reported (29, 30), this is the first to demonstrate a physiologically significant role for SMC derived ET-1 in the pathogenesis of PAH. Whether there is a physiologic role for PASMC derived ET-1 remains unknown. In the present experimental series, ET-1 derived from PASMC modulated proliferation, apoptosis, and migration, even under normoxic conditions. Despite these functional differences, RVSP was similar between the two study groups under normoxic conditions. Differences might become evident in the context of physiologic perturbations other than hypoxia, as might be the case in asthma or pneumonia. Further studies are needed to determine the functional significance of PASMC derived ET-1 under physiologic conditions.
Previous studies have demonstrated a role for ET-1 produced by EC in the regulation of peripheral vascular tone (20). Systemic blood pressure is lower in mice with EC specific deletion of ET-1 with correspondingly lower levels of circulating ET-1. In the present study, under normoxia, there was no difference in RVSP between control and SM22α-ET-1−/− mice. Similarly, after hypoxic exposure for three weeks, there was no difference in circulating levels of ET-1 between controls and SM22α-ET-1−/− animals. The similarity in circulating levels of ET-1 between genotypes buttresses the notion that ET-1 produced by SMC possesses physiologically significant local effects. While there was no difference in Fulton’s Index between the two groups despite divergent RVSP levels after 21 days of hypoxia, right ventricular remodeling might become more apparent only after more sustained hypoxic exposure.

Further support for this construct comes from *in vitro* experiments. Loss of ET-1 in SMC produced similar results in murine PASMC wherein ET-1 was never expressed and in human PASMC, wherein ET-1 expression was silenced using RNA interference. With either approach, PASMC proliferation, migration and apoptosis were affected, thereby establishing a pro-proliferative, -migratory and -survival role for SMC derived ET-1 in the pulmonary circulation. Experiments performed with pharmacologic blockers of the endothelin A and B receptors suggest that the effects of ET-1 produced by SMC are not contingent upon receptor activation as antagonism did not affect, while ET-1 depletion blocked, the hypoxia-induced increase in proliferation. These results prompt consideration
of the notion that ET-1 might play an intracellular role or signal SMC via non-ETA or ETB receptors.

Overall, while these results are consistent with prior studies detailing ET-1 production from SMC (10, 29, 30), this report points to a “pro-survival” role for SMC ET-1, which is particularly pronounced in the setting of hypoxia. ET-1 affects SMC consistently irrespective of cellular source as exogenous ET-1 is pro-proliferative (41), pro-migratory (23) and prevents apoptosis (14). Hypoxia increases ET-1 production (35, 39). The present report adds to these observations by demonstrating that endogenous ET-1 modulates SMC cellular functions that are central to the pathogenesis of pulmonary hypertension. Notwithstanding these observations, how endogenous ET-1 affects SMC function and the signal transduction pathway remains unknown. Endogenous SMC ET-1 may affect migration via ERK 1/2 MAP kinases as has been previously reported (23). Conclusions that can be drawn from the present series of experiments are limited by the discrete focus. In PASMC there may be crosstalk between ET-1 and hypoxia inducible factor-1α, a construct that is unaddressed in the present line of investigation (27). Further, the influence, if any, of endogenous ET-1 on intracellular calcium homeostasis is similarly unaddressed.

The present findings possess important implications for ET-1 signaling in SMC. Even in the presence of pharmacologic blockade of ETA and ET-B receptors, hypoxia increased SMC proliferation, apoptosis and migration. These results suggest that ET-1 may possess intracellular effect and may signal through an as yet unknown, intracellular route, as well as via the well established
and classical membrane bound receptors. Evidence in support of this construct includes the observation that circulating endothelin levels may not be wholly reflective of tissue levels of endothelin (2,10, 19, 29, 38). Hence the classical paradigm, that endothelin produced by endothelial cells, signals predominately through membrane bound receptors on SMC, may be meaningfully incomplete in a manner that possesses significant physiologic implications.

The present findings possess important clinical implications. While ET-1 receptor blockade is relatively efficacious in less severe PAH, the therapeutic benefit is diminished in patients with more severe disease, structural remodeling and loss of pulmonary vascular reactivity (33). Whether ET-1 produced by SMC accounts for the constrained therapeutic benefit is unknown. Conceivably, in the presence of already established SMC hypertrophy, ET-1 receptor antagonists might possess limited therapeutic effect owing to SMC derived ET-1.

Using a murine model of SMC specific ET-1 deletion, we demonstrate a physiologically significant role for endogenous ET-1 in the pathogenesis of PAH. ET-1 in SMC plays a role in cellular proliferation, survival and migration, functions that are central to the vascular changes that characterize PAH. These results suggest that in PAH the therapeutic efficacy of ET-1 receptor antagonists might be limited in the presence of marked pulmonary vascular remodeling. Moreover, optimizing the therapeutic benefits of ET-1 receptor antagonists might require a strategy wherein SMC derived ET-1 production might be limited.

ACKNOWLEDGMENTS
We thank M. Rabinovitch for the SM22α-promoter-driven Cre/ROSA26 reporter mice, and M. Yanigisawa for the ET-1 flox/flox mice.

SOURCES OF FUNDING

This work was supported by funding from the National Institutes of Health HL060784 and HL0706280 (D.N. Cornfield).

DISCLOSURES

None
Figure Legends

Figure 1. Generation of SM22α-ET-1-/− mice. (A) Generation of mice with smooth muscle-specific ET-1 deficiency. DNA analysis of cre recombinase and edn1 genes in SM22α-ET-1 mice. Tail DNA isolated from SM22α-ET-1+/− (control) and SM22α-ET-1−/− mice was subjected to PCR using cre-specific primers (left panel) or wild-type (WT) and mutant edn1-specific primers (right panel). (B) SMC specific deletion of ET-1 in SM22α-ET-1−/− mice. Pulmonary artery tissues from control (left panel) and SM22α-ET-1−/− mice (right panel) were stained with X-gal to detect β-gal expression. Magnification 200x. (C) Loss of ET-1 mRNA in PASMC isolated from SM22α-ET-1−/− mice. (D) Loss of ET-1 protein in PASMC isolated from SM22α-ET-1−/− mice. mPASMC were incubated under hypoxic (5% O2) conditions for 24h. Cell lysates were then assessed for ET-1 levels by ELISA. *** p < 0.001.

Figure 2. ET-1 loss in SMC attenuates the pulmonary vascular response to hypoxia. (A) Representative right ventricular systolic pressure (RVSP) tracings from individual mice exposed to chronic hypoxia. (B) RVSP of SM22α-ET-1−/− mice exposed to chronic hypoxia demonstrate a significant reduction in RVSP compared to control mice. Control and SM22α-ET-1−/− littermates were exposed to normoxic (21% O2) or hypoxic (10% O2) conditions for 3 weeks. (control, n = 7; SM22α-ET-1−/−, n = 9). ** p < 0.01, SM22α-ET-1−/− vs. control. (C) Right ventricular hypertrophy (RVH) as assessed by Fulton’s index (ratio of right ventricular weight to left ventricular+septal weight) in hypoxic mice. (control, n = 4; SM22α-ET-1−/−, n
Representative Movat pentachrome stained sections show a decrease in muscularization in peripheral PA from SM22α-ET-1−/− mice (right panel) exposed to chronic hypoxia. Magnification 400x, scale bar 25µm. Quantification of peripheral PA muscularization is expressed as the medial thickness index of pulmonary arteries ≤ 100µm in diameter. Graph represents the means ± SEM. n = 6 per genotype with 10 fields assessed per mouse. ** p < 0.01. (E) Representative histology of barium-injected lungs of control and SM22α-ET-1−/− mice after chronic hypoxia. Magnification 100x, scale bar 100µm. Mean vessel density assessed on barium-injected lungs is significantly increased in the lungs of SM22α-ET-1−/− mice. Graph represents the means ± SEM of the number of barium-filled distal PA (≤ 50µm in external diameter) per 100 alveoli. n = 4 per genotype with 6 fields assessed per mouse. ** p < 0.01. (F) Chronic hypoxia increases serum ET-1 concentration levels in both control and SM22α-ET-1−/− mice. § p < 0.05, §§ p < 0.01, hypoxia vs. normoxia.

Figure 3. Loss of SMC ET-1 inhibits the hypoxia-induced proliferative response. (A) Loss of ET-1 significantly decreases mouse PASMC (mPASMC) proliferation under both normoxic (21% O2) and hypoxic (5% O2) conditions. Cell proliferation was measured by BrdU incorporation assay after 24h. *** p < 0.001, ET-1−/− vs. ET-1+/+; §§§ p < 0.001, hypoxia vs. normoxia. (B) Representative images of PCNA expressing cells show a decrease in SMC proliferation in PA of SM22α-ET-1−/− mice exposed to hypoxia (3 weeks, 10% O2) (right panels). PCNA, green; Hoechst (nuclei), blue; α-SMA, red. (The key to these colors need to be...
Percentage of PASMC $\geq 100\mu$m in diameter positive for PCNA expression. Graph represents the means ± SEM of the number of PCNA positive SMC / the total number of SMC per PA. n = 3 for each genotype with a minimum of 500 cells counted per mouse. * p < 0.05. (C) ET-1 knockdown with siRNA in hPASMC as assessed by ELISA. *** p < 0.001, siET-1 vs. siNTC. (D) Loss of ET-1 significantly decreases hPASMC proliferation under both normoxic and hypoxic conditions. hPASMC were transfected with control siRNA (siNTC) or ET-1 siRNA (siET-1). Cell proliferation was measured after 24h by BrdU incorporation assay. *** p < 0.001, siET-1 vs. siNTC; §§§ p < 0.001, hypoxia vs. normoxia.

Figure 4. Loss of ET-1 inhibits SMC survival. (A) Loss of ET-1 significantly increases mPASMC apoptosis under both normoxic and hypoxic conditions. mPASMC apoptosis was measured after 24h by CaspaseGlo assay to detect caspase 3/7 activities. ** p < 0.01, *** p < 0.001, ET-1$^{-/-}$ vs. ET-1$^{+/+}$. (B) Loss of ET-1 significantly increases hPASMC apoptosis under both normoxic and hypoxic conditions. hPASMC were transfected with control siRNA (siNTC) or ET-1 siRNA (siET-1). Apoptosis was measured after 24h by CaspaseGlo assay to detect caspase 3/7 activities. *** p < 0.001, siET-1 vs. siNTC.

Figure 5. Loss of ET-1 inhibits SMC migration. (A) mPASMC (ET-1$^{+/+}$ and ET-1$^{-/-}$) migration was assessed by modified Boyden Chamber assay. SMC were stimulated ± 10ng/mL PDGF-BB for 24h. Representative images show that the
loss of ET-1 (ET1-/-) inhibits SMC migration (right panels) independent of PDGF-BB stimulation (lower panel). Graph represents the means ± SEM of the number of SMC per high powered field (HPF) from 10 random fields per sample. * p < 0.05, ** p < 0.01, *** p < 0.001, ET-1-/- vs. ET-1+/+; § p < 0.05, PDGF-BB vs. untreated. (B) hPASMC migration was assessed by modified Boyden Chamber assay. SMC were transfected with control siRNA (siNTC) or ET-1 siRNA (siET-1) and then stimulated ± 10ng/mL PDGF-BB for 24h. Representative images show that the loss of ET-1 (siET-1) inhibits SMC migration (right panels) independent of PDGF-BB stimulation (lower panel). Graph represents the means ± SEM of the number of migrated SMC per HPF from 10 random fields per sample. Magnification 200x. ** p < 0.01, *** p < 0.001, siET-1 vs. siNTC; § p < 0.05, §§ p < 0.01, PDGF-BB vs. untreated.

Figure 6. ET-1 receptor blockade does not alter the SMC hypoxia-induced proliferative, apoptotic or migratory responses. (A) In hPASMC, hypoxia (5% O2) for 24 hours, increased proliferation. Inhibition of either the ETA or ETB receptors had no effect on the proliferative response under normoxic conditions. Moreover, the hypoxia-induced increase in proliferation was not altered by pharmacologic blockade of either the ETA receptor with BQ123 or the ETB receptor with BQ788. Cell proliferation was measured (n = 3; for each experimental condition) by BrdU incorporation assay after 24h. ** p < 0.01, hypoxia vs. normoxia. (B) ET receptor blockade does not alter hPASMC apoptosis under both normoxic and hypoxic conditions. hPASMC apoptosis was measured after 24h by CaspaseGlo assay to detect caspase 3/7 activities. Graph
represents the means ± SEM (n = 6; for each experimental condition) and is represented as a percentage of each respective control (control = 100%). (C) ET receptor blockade does not alter hPASMC migration as assessed by modified Boyden Chamber assay. SMC were stimulated ± 10ng/mL PDGF-BB for 24h. Graph represents the means ± SEM of the number of SMC per HPF from 5 random fields per sample (n = 3; for each experimental condition). §§§ p < 0.001, PDGF-BB vs. untreated.
References

7. Furchgott RF. Studies on relaxation of rabbit aorta by sodium nitrite: The basis for the proposal that the acid-activatable inhibitory factor from bovine retractor penis is inorganic nitrite and the endothelium-derived relaxing factor is

Figure 1

A. Gel electrophoresis showing control and SM22α-ET1+/- samples. The gel is labeled with cre and edn1 bands.

B. Microscopy images of control and SM22α-ET1-/- tissues, highlighting differences in tissue structure.

C. Bar graph showing ET1/18S mRNA expression levels in ET1+/+ and ET1-/- samples. The ET1-/- sample is non-detectable.

D. Bar graph comparing ET1 levels in ET1+/+ and ET1-/- samples, with ET1-/- showing significantly lower levels (***).
Figure 2

E

Control

SM22α-ET1−/

F

Distal Arteries (per 100 alveoli)

ET1 (pg/mL)

Normoxia

Hypoxia

Control

SM22α-ET1−/

**

§§

§

ET1 (pg/mL)

Normoxia

Hypoxia

Control

SM22α-ET1−/
Figure 3

A

BrdU Incorporation (absorbance units)

- **ET1**+/+
- **ET1**−/−

<table>
<thead>
<tr>
<th>Normoxia</th>
<th>Hypoxia</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5***</td>
<td>1.0***</td>
</tr>
</tbody>
</table>

B

PCNA Positive Cells (%)

- **Control**
- **SM22α-ET1**−/−

<table>
<thead>
<tr>
<th>PCNA Positive Cells (%)</th>
<th>Control</th>
<th>SM22α-ET1**−/−</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Significant difference

§§§ Highly significant difference
Figure 3

C

![Graph showing ET1 (pg/mL) for siNTC and siET1 at 48h and 72h.]

ET1 (pg/mL)

siNTC
siET1

48h
72h

D

![Graph showing BrdU Incorporation (absorbance units) for Normoxia and Hypoxia.]

BrdU Incorporation (absorbance units)

Normoxia
Hypoxia

§§§
Figure 4

A

Caspase 3/7 Activity (RLU)

ET1^{+/+} ET1^{-/-}

Normoxia Hypoxia

B

Caspase 3/7 Activity (RLU)

siNTC siET1

Normoxia Hypoxia
Figure 5

A

ET1\(^{+/+}\) \hspace{1cm} ET1\(^{-/-}\)

PDGF-BB

Number of Migrated SMC (per HPF)

B

siNTC \hspace{1cm} siET1

PDGF-BB

Number of Migrated SMC (per HPF)

Hypoxia

Normoxia
Figure 6

A

BrdU Incorporation (absorbance units)

Normoxia

Hypoxia

7.5μM BQ123

0.1μM BQ788

B

Caspase 3/7 Activity (% of control)

Normoxia

Hypoxia

Control

7.5μM BQ123

0.1μM BQ788
Figure 6

C

Number of Migrated SMC (per HPF)

Normoxia

Hypoxia

PDGF-BB

PDGF-BB

Normoxia

Hypoxia

Number of Migrated SMC (per HPF)
Table 1. Hemodynamic assessments of control and SM22α-ET-1−/− mice.

<table>
<thead>
<tr>
<th></th>
<th>Normoxia</th>
<th>Chronic Hypoxia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>SM22α-ET-1−/−</td>
</tr>
<tr>
<td>Hematocrit (%)</td>
<td>44.2 ± 0.8 (6)</td>
<td>42.0 ± 2.1 (4)</td>
</tr>
<tr>
<td>Heart Rate (bpm)</td>
<td>367 ± 31 (3)</td>
<td>373 ± 10.7 (4)</td>
</tr>
<tr>
<td>Body Weight (g)</td>
<td>28.8 ± 1.3 (12)</td>
<td>30.9 ± 1.2 (10)</td>
</tr>
<tr>
<td>LV Fractional Shortening (%)</td>
<td>30.0 ± 3.7 (3)</td>
<td>30.0 ± 3.9 (4)</td>
</tr>
<tr>
<td>Aortic Valve Velocity Time Integral (cm)</td>
<td>2.45 ± 0.3 (3)</td>
<td>2.84 ± 0.5 (4)</td>
</tr>
</tbody>
</table>

Values are expressed as means ± SEM; number of mice per group (). § p < 0.05, §§§ p < 0.001, hypoxia vs. normoxia.