Hydrogen Peroxide-induced Calcium Influx in lung microvascular endothelial cells involves TRPV4

Karthik Suresh¹, Laura Servinsky¹, Jose Reyes¹, Syeda Baksh¹, Clark Undem¹, Michael Caterina², David B. Pearse¹ and Larissa A. Shimoda¹

¹Division of Pulmonary and Critical Care Medicine, Department of Medicine
Johns Hopkins School of Medicine, Baltimore, MD 21224

² Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD 21224

Running title:

Address for Correspondence:

Larissa Shimoda, PhD
Johns Hopkins Asthma and Allergy Building
5501 Hopkins Bayview Circle
Baltimore, MD 21224
Phone: 410-550-5355
FAX: 410-550-2612
Email: lshimoda1@jhmi.edu

Copyright © 2015 by the American Physiological Society.
Abstract

In ARDS, both reactive oxygen species (ROS) and increased intracellular calcium ([Ca^{2+}]_i) are thought to play important roles in promoting endothelial paracellular permeability, but the mechanisms linking ROS and [Ca^{2+}]_i in microvascular endothelial cells are not known. In this study, we assessed the effect of hydrogen peroxide (H_2O_2) on intracellular calcium ([Ca^{2+}]_i) in mouse and human lung microvascular endothelial cells (MLMVEC and HLMVEC, respectively). We found that in both MLMVECs and HLMVECs, exogenously applied H_2O_2 increased [Ca^{2+}]_i through Ca^{2+} influx and that pharmacologic inhibition of the calcium channel TRPV4 attenuated the H_2O_2-induced Ca^{2+} influx. Additionally, knockdown of TRPV4 in HLMVEC also attenuated calcium influx following H_2O_2 challenge. Administration of H_2O_2 or TRPV4 agonists decreased transmembrane electrical resistance (TER), suggesting increased barrier permeability. To explore the regulatory mechanisms underlying TRPV4 activation by ROS, we examined H_2O_2-induced Ca^{2+} influx in MLMVECs and HLMVECs with either genetic deletion, silencing or pharmacologic inhibition of Fyn, a Src family kinase. In both MLMVECs derived from mice deficient for Fyn and HLMVECs treated with either siRNA targeted to Fyn or the Src family kinase inhibitor SU-6656 for 24 or 48 h, the H_2O_2-induced Ca^{2+} influx was attenuated. Treatment with SU-6656 decreased the levels of phosphorylated, but not total, TRPV4 protein and had no effect on TRPV4 response to the external agonist, GSK1016790A. In conclusion, our data suggest that application of exogenous H_2O_2 increases [Ca^{2+}]_i and decreases TER in microvascular endothelial cells via activation of TRPV4 through a mechanism that requires the Src kinase Fyn.
Introduction

Acute respiratory distress syndrome (ARDS) is a common condition that affects approximately 200,000 patients every year (43) with no effective pharmacologic therapies. Loss of endothelial barrier function and formation of paracellular gaps in the lung microvascular endothelium are key features in the pathobiology of ARDS (62). The lung microvascular endothelium is composed of a specific phenotype of lung endothelial cells that are present in the alveolar capillaries and are known to be distinct from the endothelial cells of the larger, conduit vessels (i.e. macrovascular endothelium) with regards to various signaling pathways and expression of membrane channels (13, 21, 31, 51). Two mediators known to be involved in lung microvascular endothelial cell (LMVEC) barrier disruption in ARDS include reactive oxygen species (ROS) and increased intracellular calcium ([Ca^{2+}]i).

Increased reactive oxygen species (ROS) are thought to play a major role in the development of endothelial barrier dysfunction in ARDS. In particular, high levels of oxidative stress are present in ARDS, and are associated with higher mortality (41, 62). Experimentally, increasing ROS by treatment with oxidants induces edema formation in isolated perfused lungs (6, 52). Similarly, application of external oxidants or induction of intracellular ROS production worsens barrier function in vitro (5, 40, 67). Conversely, protective effects were reported with augmentation of endothelial antioxidant mechanisms (8, 49, 50). ROS, such as H_{2}O_{2}, serve as signaling molecules at low levels, and are maintained at these levels through various intracellular and extracellular antioxidant mechanisms (9). However, ROS levels can rise quickly due to increased production from intracellular sources such as NAPDH oxidase and mitochondria. Additionally, release of ROS by adherent neutrophils can also rapidly increase endothelial cell intracellular ROS. Indeed, ROS derived from circulating inflammatory cells have been shown to induce lung injury (47), and neutrophil-derived H_{2}O_{2} is thought to play a major role in endothelial injury (59). Despite these known associations between ROS and endothelial barrier dysfunction, the mechanisms by which exogenous ROS, and H_{2}O_{2} in particular, induce formation of paracellular gaps in the microvascular endothelium are incompletely understood.

In addition to increased ROS, elevated [Ca^{2+}]i via influx through membrane channels has also been shown to be a key contributor to endothelial hyper-permeability (9, 62). Intracellular Ca^{2+} is required for activation of the
contractile apparatus in endothelial cells, leading to cell retraction and disruption of the endothelial cell-cell junctions (18). Several members of the transient receptor potential (TRP) family of Ca\(^{2+}\) channels, including canonical TRPs (TRPCs) and vanilloid TRPs (TRPVs), have been implicated in various models of lung injury, including ischemia-reperfusion lung injury (65), stretch-induced lung injury (22) and heart failure models of pulmonary edema (54). TRPV4 in particular has been implicated in various models of lung injury and is thought to play a key role in lung epithelial and endothelial barrier function (37). For example, Ca\(^{2+}\) entry via TRPV4 was recently shown to be critical in chlorine inhalation and gastric acid aspiration models of lung injury (7). Additionally, a critical role for members of the TRPC family in regulating Ca\(^{2+}\) influx in the setting of various injurious stimuli (such as thrombin and LPS) in both pulmonary artery and MLMVECs has been established (2, 34, 53, 55, 56). ROS and increased [Ca\(^{2+}\)], may in fact be mechanistically linked; ROS increased [Ca\(^{2+}\)] in various tissues including the lung (40, 60), but the specific channel responsible for ROS-induced Ca\(^{2+}\) influx in the lung microvasculature is not known.

While TRPs clearly play a major role in endothelial cell responses to various stimuli, little is known regarding the mechanisms by which the function of these channels is regulated in LMVECs. In expression systems, TRP channels, including TRPV4, can be differentially regulated by phosphorylation (61, 63). The Src family kinase (SFK) family of tyrosine kinases contains several members, including Src, Fyn, Yes and Lyn, that are involved in a variety of cell signaling events (42, 44). Recently, the role of SFKs in Ca\(^{2+}\) channel regulation has been under investigation. For instance, TRPV4 activity was modulated by SFKs in HEK cells (64, 70) while phosphorylation by a variety of kinases, including Src, has been shown to affect the activity of TRPC3 and TRPC6 (25, 27, 29). Previous work established that Fyn is expressed in LMVECs (5), but the role of Fyn, or other SFKs, in regulating lung TRPs has not been determined.

Based on these data, we sought to understand the relationship between ROS and increased [Ca\(^{2+}\)] in LMVECs and to determine whether inhibition of Ca\(^{2+}\) influx pathways could affect H\(_2\)O\(_2\)-induced barrier dysfunction in LMVECs. We hypothesized that H\(_2\)O\(_2\) would increase [Ca\(^{2+}\)] by activating a membrane bound Ca\(^{2+}\) channel and that inhibiting H\(_2\)O\(_2\)-induced Ca\(^{2+}\) influx would attenuate H\(_2\)O\(_2\)-induced endothelial permeability in vitro. Using fluorescence microscopy, measurement of endothelial resistance in monolayers, genetic deletion and
silencing approaches and pharmacological inhibitors, we determined the role of TRPV4 and the Src kinase Fyn in regulating H₂O₂-induced Ca²⁺ influx in rodent and human LMVECs.

Methods

All procedures were performed in accordance with the NIH Guide for the Care and Use of Laboratory Animals and were approved by the Animal Care and Use Committee of The Johns Hopkins University School of Medicine.

Isolation and culture of LMVEC: Adult (8-10 wk), wild type (WT) C57/B6 and Fyn-deficient (Fyn⁻/⁻; strain B6.129S7-Fynmt1Sor/J) male mice were purchased from Jackson labs. Mice were sacrificed by cervical dislocation, and the lungs were quickly removed by dissection and immersed in DMEM (Gibco). Complete media for MLMVEC was prepared using: 400 mL DMEM with 20% FBS, 0.1% non-essential amino acids, 0.1% antibiotics/anti-mycotics and endothelial cell growth supplement (Millipore). Peripheral mouse lung tissue was obtained by dissection, then minced and digested by incubation with 5% Type IA Collagenase (Sigma) for 10 min. The digested cell solution was strained through a 70 µm mesh and washed with complete media, then centrifuged at 2000 rpm for 10 min. The pellet was re-suspended in 1 mL of complete media and the cell suspension incubated for 30 min with CD31-conjugated beads (Invitrogen). The supernatant was removed, and cells adherent to the conjugated beads were washed with isolation buffer (Invitrogen), centrifuged, and the pellet resuspended and plated on a T75 flask. After reaching confluency, cells were trypsinized and incubated with beads conjugated with Griffonia simplicifolia lectin, prepared by incubating 25 µL of Biotin binder Dynabeads (Invitrogen) with 1 µg of biotin-conjugated Griffonia Simplicifolia lectin (EY Labs) for 30 min at room temperature. After incubation, the beads were washed with isolation buffer, the cells centrifuged, re-suspended in complete growth media and grown to confluence. Human lung microvascular endothelial cells (HLMVEC) were purchased from Lonza, Inc. Cells were grown on gelatinized cultureware with Lonza endothelial growth media-2 (EGM-2) supplemented with 1% penicillin/streptomycin and an extra 5% FBS. All experiments were performed on at passage 5-6. To ensure that cells did not undergo transdifferentiation in vitro, both HLMVEC and MLMVECs were stained for endothelial (Griffonia simplicifolia lectin) and smooth muscle (smooth muscle specific α-actin) markers at each passage prior to experiments. Only cells that were
positive for *Griffonia simplicifolia*, and did not express smooth muscle specific α-actin, were used for experiments. For MLMVECs, experiments were conducted on cells isolated from at least three different mice; for HLMVEC, cells from three different donors were used.

Intracellular Ca^{2+} measurements: Cells were grown to 50-60% confluence on glass coverslips and loaded with 5 μM Fura-2 AM (Molecular Probes, Inc.) for 1 h at 37°C prior to being placed in a temperature-controlled (37°C) laminar flow chamber on the stage of an inverted microscope and perfused with modified Krebs solution containing (in mM): 118 NaCl, 4.7 KCl, 0.57 MgSO₄, 1.18 KH₂PO₄, 25 NaHCO₃, 2.5 CaCl₂ and 10 glucose gassed with 16% O₂-5% CO₂ at 37°C. For Ca^{2+}-free experiments, CaCl₂ was omitted and 1 mM EGTA added to the solution. Ratiometric measurement of Fura-2 fluorescence was performed using a collimated light beam from a xenon arc lamp filtered at 340 and 380 nm and focused onto the endothelial cells via a 20x fluorescence objective. After excitation at 340 and 380 nm (F₃₄₀, F₃₈₀), light emitted from the cells was returned through the objective, and detected at 510 nm by an imaging camera. An electronic shutter was used to minimize photo bleaching. The outflow rate of the flow chamber was set to 0.5 ml/min. Reservoirs containing Krebs solution as well as various drugs were connected via a manifold to a single inlet which connected to the inflow port of the chamber. At the beginning of each experiment, cells were perfused for 15 min to allow for establishment of stable baseline. Drugs (dissolved in Krebs) were added to the reservoirs prior to the experiment, thus allowing for quick switches between baseline, H₂O₂ and drug containing solutions. Hydrogen peroxide (Sigma) was freshly prepared in warmed Krebs prior to each experiment. For experiments involving drug pre-treatment, cells were either incubated with drug in the media (1-48 h) or perfused with drug in Krebs for 10-30 min prior to exposure to H₂O₂. [Ca^{2+}]	extsubscript{i} was estimated from F₃₄₀/F₃₈₀ measured in calibration solutions with Ca^{2+} concentrations of 0–1,350 nM (Molecular Probes, Eugene, OR).

Western Blotting: Cell lysates were prepared in T-PER (Life Biotechnologies) lysis buffer containing a protease inhibitor cocktail tablet (Boehringer) and phosphatase inhibitor cocktail solutions 2 and 3 (Sigma). Protein concentrations were determined using a BCA Protein Assay kit (Pierce). Equal amounts of protein (20 μg) were loaded into each well of an 8% gel and subjected to electrophoresis. Following separation, proteins were transferred to nitrocellulose membranes (iBlot, Life Biotechnologies), which were then blocked with blocking buffer (5% BSA in TBS-T), incubated with primary antibody (anti-TRPV4 1:500 – Alomone or anti-
phospho-tyrosine 1:3000 – Cell Signaling) at either room temperature for 1 h (phospho-tyrosine) or overnight at 4°C (TRPV4). Membranes were then washed and incubated with secondary antibodies (goat anti-mouse 1:3000 – Bio-Rad or goat anti-rabbit 1:3000 – Bio-Rad) for 1 h. Bands were visualized by ECL. Membranes were then stripped and re-probed with anti-GAPDH HRP-conjugated antibody (1:25000; Bio-rad). Densitometry was performed to quantify the amount of protein of interest and this value was normalized to the housekeeping protein using ImageJ software.

Electrical Cell Impedence Sensing (ECIS): Cells were seeded on gold electrodes in 0.5 ml electrode wells (Applied BioPhysics) and grown to confluence. Following measurement of baseline transmembrane electrical resistance (TER), the media was changed to serum-free basal media (EBM, Lonza), followed by a period of equilibration (1 h). Subsequently, agonists or diluent were added directly to wells. Data were analyzed using ECIS ZTheta system (Applied Biophysics).

Small interference RNA transfection: TRPV4 small interference RNA (siTRPV4) and control non-target siRNA (siNT) were designed and synthesized by Dharmacon. HLMVEC were transfected with 100 nM of siRNA for 4 h in serum- and antibiotic-free EBM (Lonza) using GeneSilencer (Genlantis) according to the manufacturer’s instruction. After 4 h, complete media (EGM-2; Lonza) was added. After an additional 24 h, the media was changed, and the cells were harvested for protein analysis or used for Ca²⁺ experiments at 48 h.

H₂O₂ electrode: H₂O₂ concentrations were measured using an electrode system (Apollo Free Radical Analyzer, World Precision Instruments). Following calibration, a H₂O₂ sensing electrode (ISO-HPO-2) was inserted into vials contained warmed Krebs solution as well as Krebs solution with various concentrations of H₂O₂ (250-1000 μM). Measurements were taken at subsequent time points, and the solutions were maintained at 38°C during the course of the experiment using a heater.

Data Analysis/Statistics: All values are expressed as means ± SE. For [Ca²⁺], measurements, data were collected from up to 30 cells and the values were averaged to obtain a single value for each experiment. Change in [Ca²⁺] was computed by subtracting the average basal [Ca²⁺], determined from one minute of data collected immediately prior to challenge with agonists, from the peak [Ca²⁺] measured in the first 5 min after beginning agonist challenge. For ECIS data, resistance measurements (R) from each ECIS well were
normalized to the resistance value at the beginning of the experiment (R_0). Data were compared using unpaired Student’s t-test or by one-way ANOVA with a Holms-Sidak post hoc test to determine differences between groups. A repeated measures two-way ANOVA was used to analyze H_2O_2 sensor data. A P value < 0.05 was accepted as statistically significant.
RESULTS

Effect of H$_2$O$_2$ on [Ca$^{2+}$] in MLMVECs and HLMVECs: Since many of our experiments utilized H$_2$O$_2$ prepared in Krebs buffer solution, we measured the stability of H$_2$O$_2$ in this solution. Using an electrode-based ROS sensor, we measured changes in current at a fixed voltage when the electrode was placed in solutions containing 250 µM, 500 µM and 1 mM H$_2$O$_2$. The concentration of [H$_2$O$_2$] in each of the solutions decreased within the first 30 min but subsequently remained stable up to 3 h (Figure 1). To determine the effects of H$_2$O$_2$ on LMVECs, [Ca$^{2+}$] was measured in semi-confluent (50-60 %) MLMVECs and HLMVECs exposed to increasing concentrations of H$_2$O$_2$. In MLMVEC, no significant change in [Ca$^{2+}$] was observed in response to 250 µm H$_2$O$_2$ (Figure 2A). When a higher concentration of H$_2$O$_2$ was applied (1 mM H$_2$O$_2$), a large rise in [Ca$^{2+}$] was observed within 120 s that was sustained for the duration of the exposure (Figure 2B,C). In order to determine whether a change in [Ca$^{2+}$], following H$_2$O$_2$ exposure was a species-specific phenomenon, the effect of H$_2$O$_2$ on HLMVECs was also tested. Consistent with the results obtained in MLMVECs, H$_2$O$_2$ increased [Ca$^{2+}$] in HLMVECs, although these cells appeared much more sensitive to H$_2$O$_2$ in that concentrations as low as 250 µM increased [Ca$^{2+}$], (Figure 2D). At a concentration of 1 mM, H$_2$O$_2$ produced a steep increase in HLMVEC [Ca$^{2+}$], that was similar in magnitude to that observed at this concentration in MLMVECs. Unlike the MLMVECs, however, the peak change in [Ca$^{2+}$], induced by H$_2$O$_2$ in HLMVECs was followed by a small reduction to a sustained plateau that was still significantly greater than baseline (Figure 2E and F).

Identifying the source of Ca$^{2+}$ in H$_2$O$_2$-induced responses: To determine whether the H$_2$O$_2$-induced rise in [Ca$^{2+}$] was due to Ca$^{2+}$ release from the endoplasmic reticulum or influx through plasma membrane channels, MLMVECs and HLMVECs were perfused with Ca$^{2+}$-free solution supplemented with EGTA (1 mM), to chelate any residual extracellular Ca$^{2+}$ in the system while being challenged with H$_2$O$_2$. In MLMVECs, the H$_2$O$_2$-induced rise in [Ca$^{2+}$] was largely absent when extracellular Ca$^{2+}$ was removed (Figure 3A,B). Similarly, in HLMVECs the change in [Ca$^{2+}$], observed in response to application of H$_2$O$_2$ was greatly reduced in the absence of extracellular Ca$^{2+}$ (Figure 3C,D). To verify that perfusion with EGTA containing Ca$^{2+}$-free media did not lead to depletion of Ca$^{2+}$ stores, we measured [Ca$^{2+}$] in HLMVECs treated with cyclopiazonic acid (CPA; 10
µM) after being perfused with normal or Ca\(^{2+}\)-free Krebs. The CPA-induced increase in [Ca\(^{2+}\)], indicative of store release, was similar in cells perfused with normal or Ca\(^{2+}\)-free media (Figure 3E).

The next step was to determine the nature of the channel involved in H\(_2\)O\(_2\)-induced Ca\(^{2+}\) influx. The ability of H\(_2\)O\(_2\) to increase [Ca\(^{2+}\)], was measured in MLMVECs pre-treated with the following Ca\(^{2+}\) channel blockers: SKF96365 (SKF; 30 µM), a non-specific inhibitor of cation channels (NSCC); mibefradil (Mib; 10 µm), to inhibit T-type Ca\(^{2+}\) channels or ruthenium red (RuR; 20 µM), an inhibitor of TRPV4 as well as other cation channels.

There was no significant change in baseline [Ca\(^{2+}\)], with any drug treatment (Table 1). Neither SKF nor Mib prevented the increase in [Ca\(^{2+}\)], after H\(_2\)O\(_2\) exposure (Figure 4A, B). In contrast, pre-treatment with RuR significantly attenuated the H\(_2\)O\(_2\)-induced rise in [Ca\(^{2+}\)] (Figure 4C, D).

Effect of TRPV4 agonism on HLMVECs: To directly evaluate the potential role of TRPV4 in the H\(_2\)O\(_2\)-induced increase in [Ca\(^{2+}\)], that we observed, we first assayed the expression of TRPV4 protein and studied the effect of TRPV4 agonism on endothelial [Ca\(^{2+}\)], and barrier function. Immunoblot analysis revealed that TRPV4 protein was clearly expressed in human and rat ECs from conduit pulmonary arteries, and in rat, mouse and human lung microvascular ECs (Figure 5A). To determine whether TRPV4 was functional in these cells, we exposed HLMVEC to the specific TRPV4 agonist, GSK1016790A (GSK; 100 nM). Application of GSK induced a rapid, large increase in [Ca\(^{2+}\)] (830±330 nM; n=4; Figure 5B). To further understand the functional consequence of TRPV4-mediated Ca\(^{2+}\) influx, we performed ECIS studies on confluent monolayers of HLMVECs exposed to GSK. Control cells treated with vehicle displayed no significant change in TER; however, TER transiently decreased in cells treated with GSK, followed by recovery to near baseline levels. These results suggest that Ca\(^{2+}\) influx via TRPV4 reduces barrier function in HLMVEC (Figure 5C, D).

Effect of TRPV4 inhibition on H\(_2\)O\(_2\)-induced Ca\(^{2+}\) influx and barrier dysfunction: To assess whether blockade of TRPV4 alters ROS-induced Ca\(^{2+}\) influx and paracellular permeability, HLMVEC were pre-treated with RuR (20 µM) or the more specific TRPV4 inhibitor HC (1 µM) for 30 min and then exposed to 250 µM H\(_2\)O\(_2\). Similar to MLMVEC, treatment with RuR significantly attenuated the increase in [Ca\(^{2+}\)], observed in response to H\(_2\)O\(_2\) (Figure 6A, B). HC treatment inhibited this response at least as well as RuR. Indeed, small rises in [Ca\(^{2+}\)], occurring several minutes after initiation of ROS exposure, were observed with RuR, but not
HC, treatment. Baseline [Ca^{2+}]_i did not significantly change with HC or RuR treatment. With respect to barrier function, no significant change in TER was noted in control or vehicle-treated cells. Consistent with prior reports (40), we observed a decrease in TER with application of 250 μM H_2O_2 (Figure 6C, D) consisting of a large initial decrease followed by transient recovery. The H_2O_2-induced decrease in TER was significantly attenuated following pre-treatment with HC.

Role of Fyn in H_2O_2-induced TRPV4 activation: We next sought to understand the regulatory mechanisms underlying activation of TRPV4 following exposure to H_2O_2. The Src family of kinases (SFK) has been previously implicated in the regulation of TRP channels. We hypothesized that H_2O_2 might induce phosphorylation of TRPV4 via Fyn, thus activating the channel. To test this possibility, we measured H_2O_2-induced Ca^{2+} influx in HLMVEC treated with SU-6656 (SU; 5 μM), a Src family kinase inhibitor. No statistically significant difference in H_2O_2-induced [Ca^{2+}]_i increase was observed in HLMVECs treated acutely (1 h) with SU (Figure 7A). However, when HLMVECs were pre-treated with SU for 24 h (Figure 7B) or 48 h (Figure 7C), the increase in [Ca^{2+}]_i induced by H_2O_2 was significantly attenuated (Figure 7D). We also measured Ca^{2+} influx in MLMVECs isolated from mice deficient in Fyn (Fyn^-/- mice). In these cells, no difference in basal [Ca^{2+}]_i was observed compared to MLMVEC isolated from WT mice; however, there was a complete lack of Ca^{2+} influx following exposure to 1 mM H_2O_2 (Figure 8).

Effect of TRPV4 and Fyn depletion on H_2O_2-induced Ca^{2+} influx: To further define the role of TRPV4 and Fyn in H_2O_2-induced Ca^{2+} influx, we measured [Ca^{2+}]_i in response to H_2O_2 challenge in HLMVEC following TRPV4 and Fyn depletion with siRNA. At a concentration of 100 nM, siRNAs targeted against TRPV4 and Fyn (Dharmacon “Smart Pool”) produced a >70% reduction in TRPV4 and Fyn protein levels after 48 h (Figure 9A-D). Interestingly, the H_2O_2-induced Ca^{2+} response in cells transfected with non-targeting siRNA (siNT) was higher than that in untransfected cells though this increase did not reach statistical significance (P = 0.1). This effect may be related to the transfection process. Compared to siNT controls, H_2O_2-induced Ca^{2+} influx was significantly attenuated in cells transfected with siTRPV4. Similar to pharmacologic inhibition and genetic absence, silencing of Fyn (siFyn) also significantly attenuated H_2O_2-induced Ca^{2+} influx (Figure 9D-E).
Phosphorylation of TRPV4 by Fyn and Ca2+ responses: Since loss of Fyn appeared to reduce H\textsubscript{2}O\textsubscript{2}-induced Ca2+ responses, we investigated whether Fyn inhibition could alter TRPV4 activation by other stimuli or alter phosphorylation of TRPV4 protein. When HLMVECs were treated with SU for 48 h before exposure to GSK, the change in [Ca2+] was similar in magnitude to the response observed in untreated cells (Figure 10A,B). When immunoblots were probed for phospho-tyrosine and TRPV4 (Figure 10C-E), HLMVECs that had been treated with SU (5 µM for 48 h) exhibited less phospho-tyrosine signal at the molecular weight of TRPV4 (approximately 100 kD), without any change in the total TRPV4 protein levels, suggesting that SU treatment reduced basal phosphorylation of TRPV4. We next measured whether H\textsubscript{2}O\textsubscript{2} caused acute changes in TRPV4 phosphorylation. Treatment with 250 µM H\textsubscript{2}O\textsubscript{2} produced no change in phosphorylated or total TRPV4, suggesting that ROS exposure does not activate TRPV4 via acute phosphorylation of the channel.

DISCUSSION

In this study, we demonstrated that application of H\textsubscript{2}O\textsubscript{2} increased [Ca2+]\textsubscript{i} levels in LMVECs through a mechanism that involves the Ca2+ channel, TRPV4. Furthermore, our data suggest that the Src kinase family member Fyn participates in basal phosphorylation of TRPV4 and that this phosphorylation may be necessary for H\textsubscript{2}O\textsubscript{2}-induced Ca2+ influx. Lastly, we showed that both TRPV4 agonism and exogenous ROS worsen barrier function \textit{in vitro}, and that these effects are attenuated by inhibition of TRPV4.

We have previously shown that exogenous provision of ROS using H\textsubscript{2}O\textsubscript{2} dissolved in a solution free of serum results in rapid uptake and a sustained increase in intracellular H\textsubscript{2}O\textsubscript{2} in MLMVEC (49). It would appear that this holds true for HLMVECs as well, as we show that both murine and human LMVECs respond to H\textsubscript{2}O\textsubscript{2} with changes in [Ca2+]\textsubscript{i}, and that in HLMVECs, the changes in [Ca2+] are associated with changes in transmembrane electrical resistance. Given the propensity of H\textsubscript{2}O\textsubscript{2} to undergo rapid degradation in solution in the presence of trace metals and other solutes, we measured [H\textsubscript{2}O\textsubscript{2}] in the buffer solution used for our Ca2+ experiments using a H\textsubscript{2}O\textsubscript{2} electrode technique previously shown by us and others to provide reliable and robust measurement of [H\textsubscript{2}O\textsubscript{2}](33, 49). Our data reveal an initial decrease in [H\textsubscript{2}O\textsubscript{2}], followed by stable [H\textsubscript{2}O\textsubscript{2}] for several hours. Since we typically allow solutions containing H\textsubscript{2}O\textsubscript{2} to be warmed and equilibrated for 30-45 min prior to the start of experiments, these data suggest that H\textsubscript{2}O\textsubscript{2} levels were stable in our experimental
solutions over the time course (1-2 hours) of our experiments, ensuring that the lack of response seen in some of our experimental conditions was not due to degradation of \(\text{H}_2\text{O}_2 \).

Though extracellular delivery of \(\text{H}_2\text{O}_2 \) was stable, it is known that large differences exist between extracellular ROS and intracellular ROS due to a variety of factors including diffusive properties of \(\text{H}_2\text{O}_2 \) itself and antioxidant capacity of various cell types (15, 26). Though the exact intracellular concentration of \(\text{H}_2\text{O}_2 \) is not known, we do not believe that it was at a level that induced cell death. In our \(\text{Ca}^{2+} \) experiments, a short washout period was included at the end of \(\text{H}_2\text{O}_2 \) challenge, and during this time period, we observed recovery of [\(\text{Ca}^{2+} \)]\(_i\), towards baseline levels (data not shown). Likewise, in our ECIS measurements of TER in HLMVEC treated with 250 \(\mu \text{M} \) \(\text{H}_2\text{O}_2 \), some recovery (although not to baseline) was noted following \(\text{H}_2\text{O}_2 \) exposure.

Moreover, cells tracked during \(\text{Ca}^{2+} \) imaging did not detach from cultureware or lose Fura-2 signal during the experiment, suggesting that cells remained viable for the duration of the experiment. Finally, our measurement of \(\text{H}_2\text{O}_2 \) in buffer solution revealed that the actual concentration of \(\text{H}_2\text{O}_2 \) delivered to cells in vitro was likely a stable, lower dose than the initial concentration; thus, it is unlikely that the changes observed in our experiments were due to non-specific, toxic effects of \(\text{H}_2\text{O}_2 \).

Our \(\text{Ca}^{2+} \) results are consistent with other reports where \(\text{H}_2\text{O}_2 \) has been shown to increase [\(\text{Ca}^{2+} \)]\(_i\) in various vascular beds (1, 36, 38, 58, 66), including bovine, human and mouse lung endothelial cells. In bovine LMVEC (40) and human pulmonary artery endothelial cells (35), \(\text{H}_2\text{O}_2 \) increased [\(\text{Ca}^{2+} \)]\(_i\) and decreased TER similar to our current findings in HLMVEC. While both HLMVECS and MLMVECs responded to \(\text{H}_2\text{O}_2 \) with an increase in [\(\text{Ca}^{2+} \)]\(_i\), there is a clear difference in sensitivity. Unlike HLMVEC, which exhibit substantial increases in [\(\text{Ca}^{2+} \)]\(_i\), and barrier disruption (as measured by ECIS) at concentrations of \(\text{H}_2\text{O}_2 \) as low as 250 \(\mu \text{M} \) (40), reductions in MLMVEC barrier function required very high concentrations of \(\text{H}_2\text{O}_2 \) (5). The difference in sensitivity to \(\text{H}_2\text{O}_2 \) with respect to barrier disruption in human and murine cells was reflected in the difference in [\(\text{Ca}^{2+} \)]\(_i\), responses to \(\text{H}_2\text{O}_2 \) with MLMVECs exhibiting little increase in [\(\text{Ca}^{2+} \)]\(_i\) at concentrations lower than 1 mM \(\text{H}_2\text{O}_2 \), the same concentration needed for barrier disruption. The exact reason for the varied sensitivity is unclear, but it may be explained by species-specific differences in antioxidant capacity (17). The difference in \(\text{H}_2\text{O}_2 \) responsiveness between mouse and human LMVECs served as a rationale for performing our inhibitor experiments in both cell types and validating our MLMVEC observations in more clinically relevant human cell cultures.
In HLMVEC, the profile of the Ca2+ response differed based on H\textsubscript{2}O\textsubscript{2} dose. While the highest concentration of H\textsubscript{2}O\textsubscript{2} tested produced a large peak followed by a significantly lower, but still elevated plateau, exposure to H\textsubscript{2}O\textsubscript{2} at lower doses (i.e., 250 µM) produced an increase in [Ca2+], that was reproducibly stable around 100-150 nM with no significant differences between the peak and plateau [Ca2+]. In MLMVEC, 1 mM H\textsubscript{2}O\textsubscript{2} produced sustained elevations in [Ca2+] without a peak or plateau, similar to the sustained rise in [Ca2+], seen in bovine lung microvascular endothelial cells (40). The reason for the differences in profile is unclear, but may reflect additional influx, efflux or release mechanisms. In both MLMVECs and HLMVECs, the H\textsubscript{2}O\textsubscript{2}-induced increase in [Ca2+] was significantly attenuated when extracellular Ca2+ was removed, suggesting that Ca2+ influx is the primary determinant of H\textsubscript{2}O\textsubscript{2}-induced Ca2+ influx. However, the possibility of store depletion and store-operated entry playing a role in our H\textsubscript{2}O\textsubscript{2} induced Ca2+ influx cannot be excluded based on our data. Indeed, small, late rises in [Ca2+], were reliably observed even in Ca2+-free experiments as well as in other experimental conditions (including TRPV4 and Fyn knockdown), perhaps corresponding to emptying of ER stores in these cells due either to prolonged absence of extracellular Ca2+ or a later H\textsubscript{2}O\textsubscript{2}-induced signaling mechanism not dependent on TRPV4. One concern when perfusing cells with Ca2+-free media containing EGTA is depletion of stores, but brisk store release was noted when HLMVEC were exposed to CPA following perfusion in Ca2+-free Krebs with EGTA, indicating that stores were still intact. Further experiments will be required to fully elucidate the source of this residual [Ca2+] response, the possible role of store-operated Ca2+ entry and whether these mechanisms play a role in H\textsubscript{2}O\textsubscript{2}-induced permeability.

It is clear from previous work that ROS can increase [Ca2+] in ECs (20, 23, 35, 40); however, the key channels responsible for H\textsubscript{2}O\textsubscript{2}-induced Ca2+ influx in LMVECs were unclear. Our initial inhibitor studies performed in MLMVEC served to determine the category of channels that may be responsible for H\textsubscript{2}O\textsubscript{2}-induced Ca2+ influx in LMVECs. Neither SFK96365-sensitive channels nor T-type Ca2+ channels appear to be important players in the H\textsubscript{2}O\textsubscript{2}-induced [Ca2+] response, as pharmacologic inhibition of these channels had no significant effect. In contrast, RuR diminished H\textsubscript{2}O\textsubscript{2}-induced Ca2+ influx in MLMVEC, suggesting TRPV4 or some other RuR-sensitive channel as the channel responsible in this cell type. To our knowledge a role for TRPV4 in oxidant-induced Ca2+ influx has not been previously described. Although TRPV4 has been studied extensively in MLMVEC, less is known about TRPV4 localization and function in HLMVEC. The presence of a large Ca2+
response to GSK in HLMVEC functionally confirmed our immunoblot data demonstrating presence of TRPV4 in these cells. Additionally, RuR also inhibited the H$_2$O$_2$-induced Ca$^{2+}$ influx in HLMVEC. However, it should be noted that RuR also inhibits other cation channels, and has been reported to both activate and inhibit sarcoplasmic reticulum and mitochondrial channels (16, 57, 71). To more firmly establish the role of TRPV4 in H$_2$O$_2$-induced Ca$^{2+}$ influx in HLMVECs, we inhibited TRPV4 with HC-067047, a putative specific inhibitor of TRPV4 previously shown to have minimal off-target effects (19, 69). Coupled with experiments in which TRPV4 was genetically depleted, our data suggest that TRPV4 plays a key role in mediating the acute Ca$^{2+}$ response to H$_2$O$_2$ in the lung microvasculature.

The fact that TRPV4 appeared to be the major channel responsible for the H$_2$O$_2$-induced increase in [Ca$^{2+}$] in human microvascular endothelial cells was somewhat surprising, as prior research had implicated members of the TRPM family (TRPM2 and TRPM4) as redox sensitive Ca$^{2+}$ channels that respond to increases in intracellular H$_2$O$_2$ (23, 46). Several explanations exist for this variation in findings. A major difference between the studies demonstrating a role for TRPM2 and our current work is the location in the lung from which cells were derived. It is now widely recognized that there is regional heterogeneity within the pulmonary endothelium, and that LMVECs are phenotypically distinct from other cell types such as pulmonary conduit or systemic endothelial cells (11, 14, 21, 51). Our results suggest that this heterogeneity may extend to the channels and/or mechanisms by which H$_2$O$_2$ induces barrier disruption, with TRPM2 playing a primary role in proximal, and TRPV4 a larger role in microvascular, ECs. The type of Ca$^{2+}$ entry (i.e. store-operated entry versus receptor-operated Ca$^{2+}$ influx) as well as the specific Ca$^{2+}$ channel responsible is likely stimulus dependent; thus, our findings of TRPV4 involvement are most applicable to physiologic states where ROS are delivered to the endothelium from exogenous sources, such as circulating inflammatory cells. Furthermore, it is possible that more than one Ca$^{2+}$ channel is responsible for the change in [Ca$^{2+}$] seen in our experiments. For example, TRP channels can form heterotetramers, and thus, it is possible that the observed Ca$^{2+}$ influx occurs due to functional coupling of TRPV4 with other TRP family members (i.e., TRPM2, TRPC1, TRPC6) as well as non-TRP channels such as Ca$^{2+}$-activated K$^+$ channels (30, 39). Lastly, Ca$^{2+}$ responses in endothelial cells may be temporally heterogeneous; H$_2$O$_2$-induced Ca$^{2+}$ influx in LMVECs may involve multiple channels.
depending on the dose of the stimulus and the time point studied. Thus, the endothelial Ca2+ response to ROS may involve additional Ca2+ channels at later time points and/or sequential activation of multiple channels.

Our data demonstrate not only that TRPV4 is important for H\textsubscript{2}O\textsubscript{2}-mediated Ca2+ responses and permeability, but also that activation of TRPV4 is sufficient to induce barrier disruption in HLMVECs. The decrease in TER induced by TRPV4 agonists was qualitatively and quantitatively similar in profile to that induced by exogenous H\textsubscript{2}O\textsubscript{2}. Taken with our ECIS experiments showing that TRPV4 inhibition attenuated H\textsubscript{2}O\textsubscript{2}-induced decreases in TER in HLMVEC, these data suggest that TRPV4-mediated Ca2+ influx modulates the pulmonary microvascular barrier, at least in vitro. One caveat in comparing the [Ca2+]\textsubscript{i} and TER experiments is that since serum can quench H\textsubscript{2}O\textsubscript{2} (12), we used serum-free media during our ECIS experiments. Unfortunately, HC-067047 did not dissolve easily in our media buffer, resulting in the need to use a higher dose for the ECIS compared to [Ca2+]\textsubscript{i} experiments. Thus, an off-target effect of HC-067047 cannot be entirely ruled out.

Additionally, since endothelial monolayers lack smooth muscle cell interactions, laminar flow and the presence of circulating immune cells, in vivo experiments will be required to determine the role of TRPV4 in oxidant-induced increases in microvascular endothelial permeability in the intact lung.

TRPV4 is activated by multiple stimuli such as heat, osmolarity, stretch and internal cell signaling molecules such as the arachidonic acid metabolite epoxyeicosatrienoic acid, or EET (4, 48, 63, 68). In our study, [Ca2+]\textsubscript{i} measurements were performed in a temperature-controlled chamber with laminar flow, and measurements were obtained after a period of perfusion with Krebs buffer solution. The exact experimental conditions are relevant given TRPV4 is known to have varying stimulus sensitivity based on temperature (22) and endothelial cells are known to undergo flow-adaptive changes in cytosolic Ca2+ in response to tonic shear stress from laminar flow. In addition, site-specific regulation of TRPV4 has been previously shown in transfected cell systems (61, 64); the responsiveness of TRPV4 to certain stimuli can be experimentally abolished by site-based mutagenesis of various phosphorylation sites (61, 63). For instance, mutation of the putative SFK phosphorylation site Y110 renders TRPV4 resistant to activation by internal cell signals and shear stress (64). However, the exact SFK involved in regulating TRPV4 function in the endothelium is not known. In neuronal tissues, the SFK member, Lyn, was found to participate in Ca2+ signaling by phosphorylating TRPV4 (3). On the other hand, we have previously shown that genetic deletion of Fyn attenuated ROS-induced barrier
These observations, along with our current data showing significant loss of Ca\(^{2+}\) influx in response to H\(_2\)O\(_2\) in Fyn\(^{-/-}\) MLMVECs, suggested that Fyn inhibition would attenuate H\(_2\)O\(_2\)-induced Ca\(^{2+}\) influx in HLMVECs. Surprisingly, short-term pretreatment of HLMVECs with SFK inhibitor SU-6656 did not significantly alter H\(_2\)O\(_2\)-induced Ca\(^{2+}\) influx. Moreover, no increase in TRPV4 phosphorylation was observed upon challenge with H\(_2\)O\(_2\) indicating that acute phosphorylation of TRPV4 by Fyn was not required for direct activation of TRPV4 by H\(_2\)O\(_2\). However, TRPV4 protein turnover has been reported to occur slowly (24) and thus led us to speculate that the differential effect of genetic deletion and acute inhibition of Fyn might be due to baseline Fyn-dependent phosphorylation of TRPV4 being necessary, but not sufficient, to induce Ca\(^{2+}\) influx.

In this case, we reasoned that activation of TRPV4 by H\(_2\)O\(_2\) would require both basal phosphorylation and subsequent activation of TRPV4 via another mechanism. Indeed, inhibition of Fyn for a longer period of time (48 h) reduced phosphorylation, but not total membrane expression, of TRPV4, and attenuated H\(_2\)O\(_2\)-induced Ca\(^{2+}\) influx.

One limitation of the current data is that it is not possible to fully elucidate whether Fyn phosphorylates TRPV4 directly or if an intermediate kinase is involved; further investigations focused on delineating the physical interactions between TRPV4 and Fyn or the possible role of kinases downstream of Fyn will be useful in this regard. Interestingly, exogenous agonism of TRPV4 was not altered by prolonged SFK inhibition; this channel behavior is in concordance with several prior studies that have suggested that SFK-mediated phosphorylation of TRPV4 is necessary for activation by some stimuli but not exogenous agonists (3, 64, 70). While off-target effects of SU, which can target all SFK members, cannot be excluded, our hypothesis that Fyn is responsible for phosphorylation of TRPV4 is supported by the lack of H\(_2\)O\(_2\)-induced increases in [Ca\(^{2+}\)]\(_i\) in experiments performed in MLMVECs from Fyn\(^{-/-}\) mice and HLMVECs in which Fyn was silenced.

The exact mechanism by which H\(_2\)O\(_2\) activates TRPV4 is still under investigation. One possibility is that ROS activates Ca\(^{2+}\)-independent phospholipase A\(_2\) (32) leading to production of arachidonic acid (AA) metabolites which are known to directly activate TRPV4 (63). Though our data suggest a role for membrane bound Fyn and basal phosphorylation of TRPV4 in transduction of ROS signaling, prior work has shown that Fyn also functions in a protective role through effects on focal adhesion kinase (FAK) phosphorylation in response to thrombin-induced endothelial injury (45). Since Fyn has been shown to translocate to various domains within...
the cell (10, 28, 45), we hypothesize that Fyn may function in both injurious or protective roles depending on
the stimulus involved and specific cellular localization. Additionally, though our data suggest a role for basal
Fyn activation, it is known that the activity of Fyn can be modulated by phosphorylation at Tyr residues 419 and
529 (10, 42). Thus, it is entirely possible that stimulus-specific changes in Fyn phosphorylation may determine
downstream effects of Fyn unrelated to our proposed effect on basal TRPV4 phosphorylation.

In the current study, we specifically focused on the early Ca^{2+} influx that occurs within 5-10 min of exposure to
exogenous H_{2}O_{2} in LMVECs. That blockade of TRPV4 or Fyn significantly reduced the H_{2}O_{2}-induced change
in TER suggests that Fyn-dependent activation of TRPV4 is an initiating event and likely a major factor
governing the initial barrier response to oxidant injury. However, it is well known that ROS activate many
signaling pathways, and it is likely that a myriad of other kinase and Ca^{2+} channel pathways, as well as
calcium-independent mechanisms, may also play a role during both the time interval studied as well as at later
time points. Further studies utilizing time-specific blockade of various channels, as well as studies utilizing
inhibitors of non-Ca^{2+} dependent ROS pathways, will be required to further dissect the sequence of Ca^{2+}
channels that are likely activated by ROS in endothelial cells and to more firmly establish the role of ROS-
induced Ca^{2+} influx in the overall ROS response.

In conclusion, our data suggest that TRPV4 plays a key role in the early rise in [Ca^{2+}] in mouse and human
LMVECs following exposure to H_{2}O_{2}, and that inhibiting TRPV4-mediated Ca^{2+} influx attenuates barrier
dysfunction in response to H_{2}O_{2} in vitro. Furthermore, our data suggest a novel role for Fyn in regulating the
function of TRPV4 through phosphorylation. Although these results provide insight into some of the
mechanisms that regulate Ca^{2+} signaling in vitro, further work is needed to determine whether other TRP
channels also contribute to H_{2}O_{2}-induced Ca^{2+} influx and the role of TRPV4 in oxidant injury and barrier
function in vivo.
References

Sciences of the United States of America
agonists use distinct pathways for the activation of the cation channel TRPV4.

Trollinger DR, Cascio WE, and Lemasters JJ. Mitochondrial calcium transients in adult rabbit cardiac myocytes: inhibition by ruthenium red and artifacts caused by lysosomal loading of Ca(2+)-indicating fluorophores. 2000.

Figure Legends:

Figure 1: Traces of HPO electrode current at 450 mV poise voltage when placed in warmed Krebs solution containing 250 μM, 500 μM and 1 mM H₂O₂. * denotes significant difference from control. n=4-5 experiments/group.

**Figure 2. A,B) **Representative traces and C) bar graph showing mean± SEM change in intracellular Ca²⁺ ([Ca²⁺]) from baseline in MLMVEC exposed to 250 µM and 1 mM H₂O₂ in Krebs buffer (n=4-6 experiments, 25-30 cells/experiment). D,E) Representative traces and F) bar graph showing mean± SEM in HLMVEC exposed to increasing doses of H₂O₂ (n=6-12 experiments, 20-40 cells/experiment for all groups). * indicates significant difference from 250 µM; # indicates significant difference between peak and plateau ∆[Ca²⁺].

Figure 3. Representative trace and bar graph showing mean± SEM change in [Ca²⁺] in MLMVEC A,B) and HLMVEC C,D) exposed to H₂O₂ while perfused with Krebs buffer containing 0 mM Ca²⁺, n=5-9 experiments, 20-40 cells/experiment for all groups. E) Mean traces and F) bar graph showing mean± SEM change in [Ca²⁺] in HLMVEC exposed to CPA (10 µM) in regular and Ca²⁺-free Krebs solutions, n=3 experiments, 20-40/cells/experiment for all groups. * indicates significant difference from 2.5 mM Ca²⁺ group.

Figure 4. Representative tracings showing change in [Ca²⁺] following pre-treatment with A) SKF96365 (SKF; 30 µM), B) mibebradil (Mib; 10 µM) and C) ruthenium red (RuR; 20 µM). D) Bar graph showing mean change± SEM in [Ca²⁺] following H₂O₂ in cells pre-treated with SKF, Mib or RuR. n=6 experiments each, 25-30 cells/experiment. * indicates significant difference from control.

**Figure 5 A) **Expression of TRPV4 in human and rodent lung endothelial cells, including mouse and rat microvascular endothelial cells (MLMVEC, RLMVEC), rat pulmonary artery endothelial cells (RPAEC), human lung microvascular endothelial cells (HLMVEC) and human lung pulmonary artery endothelial cells (HPAEC). B) Increase in [Ca²⁺] in HLMVEC following exposure to GSK1016790 (GSK; 100 nM). C) ECIS traces and D) bar graph showing mean± SEM decrease in TER in HLMVEC following exposure to GSK. n=8 experiments each. * indicates significant difference from control.
Figure 6 A) Representative traces and B) bar graphs showing mean± SEM change in [Ca^{2+}] in HLMVEC treated with the TRPV4 inhibitors ruthenium red (RuR; 20 µM) and HC-067047 (HC; 1 uM). C) ECIS traces and D) bar graph showing mean± SEM decrease in TER in HLMVEC following exposure to 250 µM H_{2}O_{2} with and without HC pre-treatment. For comparison purposes, the untreated H_{2}O_{2} response shown in Figure B is reproduced from Figure 2. n=6-8 experiments/group, 20-40 cells/experiment, * indicates significant difference from control.

Figure 7: Representative traces of [Ca^{2+}] in HLMVEC following pre-treatment with the Fyn inhibitor, SU-6656 (SU; 5µM), for A) 1, B) 24 and C) 48 h. D) Bar graph showing mean± SEM change in [Ca^{2+}] in control and SU-treated HLMVEC following exposure to 250 µM H_{2}O_{2}. For comparison purposes, the 250 µM H_{2}O_{2} response shown in Figure D is reproduced from Figure 2. n=6 experiments/group, 20-40 cells/experiment. * indicates significant difference from control.

Figure 8 A) Representative traces and B) bar graph showing mean± SEM change in [Ca^{2+}] in MLMVEC isolated from Fyn^{-/-} mice and exposed to 1 mM H_{2}O_{2}. n=3-6 experiments/group, 20-40 cells/experiment. * indicates significant difference from WT.

Figure 9 A-B) Representative immunoblot images and C-D) densitometry showing TRPV4 and Fyn protein levels for HLMVEC transfected with non-targeting (siNT) and TRPV4 (siTRPV4) or Fyn (siFyn) siRNA. n=3 independent experiments. E) Representative traces and F) bar graph showing mean± SEM change in [Ca^{2+}] in HLMVEC transfected with siNT, siTRPV4 or siFyn and exposed to 250 µM H_{2}O_{2}. n=4-7 experiments/group, 20-40 cells/experiment. * indicates significant difference from siNT.

Figure 10 A) Representative trace of [Ca^{2+}] in HLMVEC exposed to GSK (100 nM) after treatment with SU-6656 (SU; 5 µM) for 48 h. B) Bar graph showing mean± SEM change in [Ca^{2+}] in control and SU-treated HLMVEC following exposure to GSK. n=5 experiments/group C-E) Representative immunoblot images and densitometry showing protein levels of phosphotyrosine and TRPV4 protein in HLMVEC under control conditions, or treated with either 250 µM H_{2}O_{2} or SU-6656 (5 µM), n=3 independent experiments. * indicates significant difference from control.
<table>
<thead>
<tr>
<th></th>
<th>MLMVEC</th>
<th></th>
<th>HLMVEC</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline [Ca^2+], WT: Wild-type MLMVEC; SKF: SKF-96365; Mib: Mibefradil; RuR: Ruthenium red; HC: HC-067047; SU: SU-6656; siNT: Non-target siRNA; siTRPV4: TRPV4 siRNA; siFyn: Fyn siRNA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WT</td>
<td></td>
<td>Untreated</td>
<td></td>
</tr>
<tr>
<td></td>
<td>171±13</td>
<td></td>
<td>90±7.4</td>
<td></td>
</tr>
<tr>
<td>WT+SKF</td>
<td>261±40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT+Mib</td>
<td>137±8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT+RuR</td>
<td>179±33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fyn^−</td>
<td>160±8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HLMVEC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Untreated</td>
<td>90±7.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HC</td>
<td>84±5.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RuR</td>
<td>123±15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SU 1h</td>
<td>96±19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SU 24h</td>
<td>105±9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SU 48h</td>
<td>95±5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>siNT</td>
<td>73±4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>siTRPV4</td>
<td>81±7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>siFyn</td>
<td>67.7±10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Graphical Representation

- **x-axis**: Time (hours)
- **y-axis**: [H₂O₂] (mM)

Lines
- **1 mM H₂O₂**
- **500 µM H₂O₂**
- **250 µM H₂O₂**

Annotations
- * indicates significant difference.
A

0 mM Ca$^{2+}$

1 mM H$_2$O$_2$

[Ca$^{2+}$] (nM)

0

100

200

300

400

200 sec

B

Δ[Ca$^{2+}$] (nM)

0 mM Ca$^{2+}$

2.5 mM Ca$^{2+}$

C

0 mM Ca$^{2+}$

250 μM H$_2$O$_2$

[Ca$^{2+}$] (nM)

0

100

200

300

400

200 sec

D

Δ[Ca$^{2+}$] (nM)

0 mM Ca$^{2+}$

2.5 mM Ca$^{2+}$

E

10 μM CPA

[Ca$^{2+}$] (nM)

0

100

200

300

400

200 sec

F

Δ[Ca$^{2+}$] (nM)

0 mM Ca$^{2+}$

2.5 mM Ca$^{2+}$
A

1 mM H$_2$O$_2$

30 µM SKF

200 sec

B

1 mM H$_2$O$_2$

10 µM Mib

C

1 mM H$_2$O$_2$

20 µM RuR

D

1 mM H$_2$O$_2$

Control

SKF

Mib

RuR

*
A. 250 μM H₂O₂

B. Δ[Ca²⁺] (nM)

C. 250 μM H₂O₂

D. ΔTER (R/R₀)
Figure Legend

A. SU (1h) 250 μM H₂O₂

B. SU (24h) 250 μM H₂O₂

C. SU (48h) 250 μM H₂O₂

D. [Ca²⁺]ᵢ (nM)

- **Control**
- **SU 1h**
- **SU 24h**
- **SU 48h**
A

$[Ca^{2+}]_i$ (nM)

200 sec

$1 \, \text{mM H}_2\text{O}_2$

$Fyn^{-/-}$

WT

B

$\Delta [Ca^{2+}]_i$ (nM)

WT

$Fyn^{-/-}$
Figure A shows the time course of intracellular calcium ([Ca\(^{2+}\)]\text{\(i\))} with 100 nM GSK SU (48h) treatment.

Figure B illustrates the fold change in GAPDH and TRPV4 with 100 nM GSK SU (48h) treatment compared to control.

Figure C displays the Western blot analysis for p-Tyr, TRPV4, and GAPDH with 100 nM GSK SU (48h) treatment.

Figure D represents the fold change in p-Tyr with 100 nM GSK SU (48h) treatment compared to control.

Figure E presents the fold change in TRPV4 with 100 nM GSK SU (48h) treatment compared to control.